
73

Rhythm: Assuring Beat,
Process, and Movement

F O U R

Rhythm is one of the principal translators between dream and reality. Rhythm
might be described as, to the world of sound, what light is to the world of sight.

—Edith Sitwell in Taken Care Of [Sitwell65]

Overview

Grady Booch points out in Object Solutions that the iterative nature of
object-oriented development makes rhythm a critical element for suc-
cess. He writes that having a rhythm forces closure at periodic inter-

vals, coordinates supporting activities, and helps organizations react better
when problems arise [Booch96]. Rhythm is important to any development
process, but especially for architecture-based development. Rhythm can battle
complexity, keep competition off-balance, and maintain sanity and predictabili-
ty for architecture and development teams.

The sharing of an architecture is like an improvisational jazz ensemble.
Each player in an ensemble is autonomous, but each musician’s performance is
coordinated by cues exchanged with the other musicians as well as the tempo,
key, and style of the performance. While the basic elements of the performance
may be written down or planned, many elements are performed by the musi-
cians relying on their instinct, training, and talent.

PH021-Dikel04 1/8/01 11:00 AM Page 73

Just as a jazz combo must share a common tempo, phrasing, and pro-
gression to have a rhythm, an architecture team must share work products with
predictable timing, content, and quality. Software architectures are developed
and used in many different organizations. Since many of these groups are
autonomous, it is not possible to fully coordinate all of them from the top
down. Without rhythm, sharing an architecture can befuddle even the best-
designed schemes for communicating across teams.

Rhythm provides a temporal framework that allows groups sharing an
architecture to synchronize activities and expectations. With rhythm, stake-
holders know when and on which activities to focus. Not only can organiza-
tions with rhythm coordinate planned activities, but they can also coordinate
those tasks that do not show up on plans because they are performed by other
organizations or are not visible enough to be included in the planning process.
When rhythm is weak, dissonance between organizations emerges, paving the
road to architecture breakdown.

Rhythm Definition

Rhythm is the recurring, predictable exchange of work products within an architecture group and across their customers and
suppliers.

There are three elements of rhythm: tempo, content, and quality (see
Figure 4.1). As in music, architecture rhythm is not just the repetition of a
beat. Effective rhythm enables teams throughout the organization to coordi-
nate explicit and complex activities without the corresponding load of commu-
nication and coordination. If tempo, content, or quality is lacking, these
benefits will not be realized, and progress will not be made.

74 Rhythm: Assuring Beat, Process, and Movement

Figure 4.1
There are three ele-
ments of rhythm:
Tempo, content,
and quality.

PH021-Dikel04 1/8/01 11:00 AM Page 74

Tempo

Tempo is the frequency with which the same type of handoff occurs between
one group and another—for example, between the architecture team and prod-
uct development engineers. The more predictable the timing of each handoff
becomes, the easier each transition is to manage. As illustrated by Figure 4.2,
there may be many different tempos. Some organizations have different inter-
vals for major releases, minor releases, and bug fixes. DAILY BUILD AND

SMOKE TEST is one example of this notion of tempo [Cabrera99]. Microsoft
has popularized this practice [Cusumano95][McCarthy95][McConnell96].
Regular release schedules are another example of tempo.

Content

Content is the delivery of value from one group to another. An example of the
delivery of content is when a group develops a new or modified feature that
another group uses to fill a need. Moving completed builds from development
to testing is another example of the delivery of content. Content requires that
the receiving group derives value from the delivery. For example, it is not
enough to maintain a beat of daily builds if the builds are not used. Figure 4.3
illustrates an organization that maintains a regular tempo without delivering
enough content with each beat. In this situation, stakeholders tune out the
rhythm because so little progress is made with each beat. Iterative develop-
ment, when working effectively, exemplifies content delivery as illustrated in
Figure 4.4. Each iteration builds on the previous cycle. Figure 4.5 describes
the situation in which value is added from each handoff, but because there is

Rhythm Definition 75

PR
O

G
RE

SS

TIME

MAJOR
RELEASE
RHYTHM

MILESTONE
RHYTHM

DAILY OR
WEEKLY
RHYTHM

Figure 4.2 There may be rhythms of many different tempos at once.

It is not enough
to maintain a
beat of daily
builds if the
builds are not
used.

PH021-Dikel04 1/8/01 11:00 AM Page 75

76 Rhythm: Assuring Beat, Process, and Movement

PR
O

G
RE

SS

TIME

Figure 4.3 Regular tempo with little content.

PR
O

G
RE

SS

TIME

Figure 4.4 The tempo of effective iterative development.

PR
O

G
RE

SS

TIME

Figure 4.5 Content without a regular tempo.

PH021-Dikel04 1/8/01 11:00 AM Page 76

no regular tempo, the timing of these handoffs is irregular. In this situation,
rhythm is lacking because participants cannot anticipate when handoffs are
going to occur.

Quality

Quality means that processes are followed to ensure that the architecture is free
of deficiencies.1 Organizations sometimes try to sustain their tempo by compro-
mising on quality, for example, by skimping on testing, or by redefining what is
required by a handoff. This situation is illustrated in Figure 4.6. Organizations
may be able to accelerate their tempo by eliminating steps that do not add
value, but if essential processes are truncated, rhythm will break down.

Consider the following example of the deterioration of quality. A devel-
opment group was trying to achieve a goal of reaching an established mile-
stone every three months. It became clear that the group was not going to
reach a particular milestone, so they redefined the criteria for passing a mile-
stone to maintain their schedule. They reclassified the severity of a number of
outstanding defects. In this case, the process was abbreviated and the product
was able to pass the milestone with lower quality. Additional effort was need-
ed to improve the quality before the product reached the next milestone. Even
though beat was maintained for the initial milestone, it just postponed the
breakdown until a later milestone.

Rhythm Definition 77

Figure 4.6 Incomplete rhythm: Truncated process to maintain a tempo

PR
O

G
RE

SS

TIME

ABBREVIATED
PROCESSES

1 This definition is based on the American Society for Quality’s definition of the term quali-
ty. [ASQ00]

PH021-Dikel04 1/8/01 11:00 AM Page 77

Motivation

Why is rhythm so important to software architecture? Since software architec-
tures are developed and used across many organizational boundaries, rhythm
provides a stabilizing force that coordinates activities within and across teams
and organizations. Like an improvisational jazz ensemble, architecture stake-
holders need to be able to anticipate the activities of the other stakeholders. If
stakeholders cannot plan activities and budget resources, then each transition
requires a great deal of effort and time for communication and coordination
among the involved parties. Maintaining a rhythm over multiple releases also
strengthens the credibility of the architecture supplier.

Our interviews with Allaire Corporation demonstrated how this ability to
anticipate enabled the organization to act quickly and efficiently. When Allaire
experienced growth, managers knew when in their release cycle to hire testers,
when to hire developers, and when to hire customer support personnel.
Managers also knew what training to provide and when. Shortages or oversup-
ply of a skill set were identified as a sure sign that rhythm was breaking down.

Rhythm Aids Transition Management

When rhythm is strong, stakeholders build strong skills that enable them to
anticipate and execute transitions and handoffs. Organizations are then able to
treat transitions as a recurring, regularly planned activity. When rhythm is not
strong, transitions and handoffs often come as a surprise. Kathleen Eisenhardt
and Shona Brown point out that “because major transitions are periods when
companies are likely to stumble, we expected to find that managers would
devote extra attention to them. The surprise is that they don’t”2 [Eisenhardt98].

Rhythm Drives Closure

Rhythm also helps an organization bring activities to closure. “Iterative and incremen-
tal releases,” writes Booch, “serve as a forcing function that drives the development
team to closure at regular intervals” [Booch96]. A study by Connie Gersick illustrates
this notion. She observed project groups from six organizations. She found that even
though the studied projects ranged from several days to several months, every group
exhibited a distinctive approach to its task when it commenced and remained with
that approach “until precisely halfway through the group’s allotted duration.” At the

78 Rhythm: Assuring Beat, Process, and Movement

2 K. Eisenhardt, S. Brown, “Time Pacing: Competing in Markets that Won’t Stand Still.”
Harvard Business Review (March–April, 1998).

PH021-Dikel04 1/8/01 11:00 AM Page 78

Motivation 79

Figure 4.7
Halfway to a deadline, teams typically adjust
their approach and make dramatic progress

PARENT ARCHITECTURE

COMPONENT

PARENT ARCHITECTURE

COMPONENT

TIME

RELEASE

Figure 4.8 Before—The release cycle of the component is tied to the parent’s release cycle.

halfway point, she observed that the groups “dropped old patterns, reengaged with
their outside supervisors, adopted new perspectives on their work, and made dramatic
progress” [Gersick89] (see Figure 4.7). An organization with a good rhythm estab-
lishes regular intervals and halfway points to motivate this reassessment and progress.

USING RHYTHM TO TAKE CHARGE
Developers can use rhythm to take charge of their fates, even when their parent organization is bureaucratic. In one large,
hierarchical information technology organization, a team built a component. Unlike most of the components owned by the par-
ent organization, both the parent organization and customers in other chains-of-command used the team’s component. The par-
ent organization controlled the schedule. Component users could not count on timely delivery because release dates were tied
to releases of the rest of the architecture, whose tempo was generally chaotic, as illustrated in Figure 4.8.

To resolve the situation, the component team began a regular release cycle, decoupling the release of the component from the release
of the rest of the architecture. The component team was capable of delivering multiple releases for each release of the parent architec-
ture. As a result, the component team was able to release more frequently because they cut the time required to deliver a release in
half, as illustrated in Figure 4.9. Not only were customers outside the parent’s chain-of-command pleased by the predictable schedules,
but customers inside the parent organization found it easier to coordinate their releases. Testing became more predictable, quality

PH021-Dikel04 1/8/01 11:00 AM Page 79

improved, and customer satisfaction increased. In addition, the parent architecture release cycle became shorter and more regular.

80 Rhythm: Assuring Beat, Process, and Movement

PARENT ARCHITECTURE

COMPONENT

COMPONENTCOMPONENT COMPONENTCOMPONENT

PARENT ARCHITECTURE

COMPONENT

TIME

Figure 4.9 After—When the release cycle was decoupled, the component could be released
more frequently.

Putting Rhythm Into Practice:
Criteria, Antipatterns, and Patterns

The previous sections describe how the principle of rhythm is important for
coordinating the activities of architecture stakeholders. The consequences of
failing to establish a rhythm can lead to dissatisfied customers, unexpected
defects, and components that do not work well together.

CRITERIA
The following criteria, patterns, and antipatterns provide guidelines and tech-
niques that organizations can use to determine how well they establish a pre-
dictable execution of process, movement, and beat within an architecture group
and across its customers and suppliers.

When rhythm is working…

1. Managers periodically reevaluate, synchronize, and adapt the architecture.

2. Architecture users have a high level of confidence in the timing and con-
tent of architecture releases.

3. Explicit activities are coordinated via rhythm.

PH021-Dikel04 1/8/01 11:00 AM Page 80

Putting Rhythm Into Practice 81

ANTIPATTERNS
KILLER FEATURE is what happens when an organization becomes so

focused on getting one feature to market that the internal rhythm is disrupted.
Even if the feature is delivered, the organization may be blind-sided by com-
petition because of the single-minded focus on getting the feature to market. It
is an example of what happens when the management does not regularly
reevaluate and adapt the architecture.

SHORT CUT can happen when the organization tries to maintain a regular
beat of releases by taking short cuts in the organization’s process. This antipat-
tern compromises the quality and content that users expect from the architecture.

BROKEN LOADS can happen when an organization has tried to implement
regular builds, but the builds frequently fail to compile or pass automated
tests. This represents a breakdown of coordination.

PATTERNS
RELEASE COMMITTEE describes an approach for coordinating the parties

involved in releasing a new architecture. The pattern illustrates a way for man-
agers to reevaluate, synchronize, and adapt an architecture during the final
stretch of an architecture’s release.

DROP PASS examines how organizations can maintain a beat by moving
less critical features to later release cycles. By maintaining the rhythm, this
pattern gives users more confidence on the timing of architecture releases.

SYNCHRONIZE RELEASES is a technique for extending the notion of rhythm
beyond an organization’s boundaries. This pattern provides a way to synchro-
nize the activities of the architecture team and their users.

Table 4.1 illustrates how the remainder of this chapter is organized.

PH021-Dikel04 1/8/01 11:00 AM Page 81

Table 4.1 Mapping Criteria to Antipatterns and Patterns

Criterion— Antipattern— Pattern—
How you measure What not to do What you can do

82 Rhythm: Assuring Beat, Process, and Movement

1. Managers periodically reevalu-
ate, synchronize, and adapt the
architecture.

KILLER FEATURE RELEASE COMMITTEE

2. Architecture users have a high
level of confidence in the timing
and content of architecture releases.

SHORT CUT DROP PASS

3. Explicit activities are coordi-
nated via rhythm.

BROKEN LOADS SYNCHRONIZE RELEASES

Criterion 1: Managers periodically
reevaluate, synchronize, and adapt the
architecture.

A good rhythm needs a regular beat. From the perspective of management, this
means shifting from event-pacing to time-pacing. Rather than making decisions
when there is a change in competition, technology, or customers, decisions are
made on a regular, calendar-driven schedule [BrownS98]. For managers of archi-
tecture organizations, this means that they must reevaluate, synchronize, and adapt
their plans for the architecture at regular intervals. Time-pacing is effective as a
strategy “because it forces managers to look up from their business on a regular
basis, survey the situation, adapt, if necessary, and get back to work”
[BrownS98].3 The beat of the rhythm can also provide a framework for the plan-
ning process. Instead of asking “How long will it take to implement a feature?” an
organization with a good rhythm can ask “How much of the feature can we do in a
single beat?” or “How many beats will it take us to fully implement the feature?”

Antipattern: KILLER FEATURE

Alias: CLOSE TO EVEREST

General Form. You are an executive or architect and you are planning
a new release that will be driven by a major, cutting edge feature. While drop-
dead great features provide a serious competitive edge, focus on the impossi-
ble dream of one feature can literally kill a product or product line by

Killer
Feature

Release
Committee

3 S. Brown, K. Eisenhardt, “Competing on the Edge.” Harvard Business School Press (1998).

PH021-Dikel04 1/8/01 11:00 AM Page 82

destroying internal rhythm. You sincerely believe that if the team can just get
this feature out, everything else, such as increased sales and marketshare, will
fall into place. The team is driven to deliver this feature to the exclusion of
others, often cutting corners on quality. Managers do not look up until the
KILLER FEATURE is delivered or until they are blind-sided by their competitors
or customers. When the release containing the feature is finally delivered, the
team is exhausted. Worse, since everyone had been so focused on the feature,
no one knows what to do next.

Forces. Customers and potential customers are not shy about tying lead-
ing-edge features to their commitment of continued business. These statements
can lead entrepreneurs to conclude that if they could provide one single feature,
they would gain a prized customer’s business. While some key customers make
decisions solely based on the presence or absence of one feature, other potential
customers may be discouraged if there is no definition of or commitment to a
broad array of features, or if the future direction of the architecture is not articu-
lated clearly. A successful architecture is never finished, but is continually evolv-
ing to keep pace with changing customer needs and environments.

Solution. The key feature should be implemented as part of the team’s
rhythm, not in spite of it. A particular release may be focused around a partic-
ular theme, which may help the release to take advantage of opportunities in
the marketplace. If the key feature is particularly complex, it may need to be
implemented across several iterations. If it becomes difficult to maintain the
rhythm while implementing the key feature, it is most likely a warning sign
that the risk and complexity of the feature is greater than anticipated, and that
replanning is necessary.

Rationale. A KILLER FEATURE can be like mountain climbers scaling
Mount Everest. The climbers see the summit, and it appears easy to attain, but
in reality the distance is an illusion—a hard and treacherous journey to the
peak remains, and the oxygen becomes thinner with each step. Similarly, the
drive for a KILLER FEATURE may seem like a short diversion for the team, but
may expose the organization to a number of risks. Organizations with an
effective rhythm benefit from the tacit coordination of many activities and
groups. When an organization trades this rhythm for a drive to implement a
KILLER FEATURE, this coordination will suffer. Further, successful software
architectures can remain in use for a very long time, and it is impossible to
forecast all of the turns in the marketplace over that period of time. While it is
true that a killer feature may increase revenue or marketshare, it is also true
that another brand-new technology could be around the corner that will com-
pletely reshape the marketplace. Without regular cycles to reevaluate and
adapt the architecture these changes in environment might be missed. The

Putting Rhythm into Practice 83

PH021-Dikel04 1/8/01 11:00 AM Page 83

sponsors and senior management for a software architecture must periodically
reevaluate and adapt the architecture to respond to these challenges.

Example. A major vendor of a very successful accounting and con-
stituent management software product line hired a CEO whose primary mission
was to take the company public. The CEO recognized that going public as an
Internet company would result in a much higher valuation. However, changing
the research and development (R&D) to focus on a KILLER FEATURE, a Web
front-end integrated with the legacy product line, would pose a massive disrup-
tion of the company’s long-established rhythm and release cycle. The company
would have to establish a new division, manage and evolve new skills, and
establish new interfaces to integrate technologies that did not exist when the
disparate legacy technology was developed. It was a massive challenge.

What did the CEO do? He punted. Instead of investing in R&D for the
required technology and setting an impossible schedule for delivery, he
shopped to acquire an Internet company and settled on a seven-figure transac-
tion with a proven Web-application development firm. The CEO said, “Time-
to-market is everything.” The company brought to market a credible Internet
offering and stayed on track for its IPO.

Another leading software and hardware vendor applies a number of
strategies to avoid this antipattern. One group uses an approach in which they
split the time in the release into four roughly equal parts for requirements,
design, implementation, and delivery. If the features for a release cannot fit
into the time allotted for requirements, they re-plan the release based on the
logic that if the requirements couldn’t be completed in the allotted window,
then the other planned windows would not be sufficient either. Another group
in the same company takes this management of features in each release a step
further. They plan more releases, some of which are developed in parallel, and
partition the features between the releases. Each release is implemented more
quickly, so the important features get to market more quickly. Candidate and
Upcoming features are always in the pipeline, so the direction is clear to both
the team and the customers.

When is This Antipattern a Pattern? Sometimes it makes sense to
organize a release around a particular theme. This is particularly true when the
feature enables users’ products to move in a strategic direction. Some organi-
zations use this theme as a way to prioritize which features are essential for a
release and which are optional. In these cases, the essential features do receive
more attention and resources, but they are still approached within the overall
vision of the architecture.

84 Rhythm: Assuring Beat, Process, and Movement

PH021-Dikel04 1/8/01 11:00 AM Page 84

Variation: LATE KILLER FEATURE. The worst case of this antipattern
is the LATE KILLER FEATURE. In this case, the feature surfaces very late in the
development cycle. Just when things are settling down and a release seems
imminent, it suddenly becomes necessary to add something new to address
“market conditions.” These late additions are uniformly regrettable. Since they
were not part of the vision for the cycle they do not fit into the architecture and
are implemented as kludges. Even though the new feature seems critical, the
long-term impact on the architecture and on the customers is harmful.
Correcting mistakes added at these late stages leaves hanging the customers
who bought into them.

Related Antipatterns and Patterns. This antipattern is similar to
TUNNEL VISION (Chapter 5, Anticipation); in both cases, the organization is
driven to a particular goal. Unlike TUNNEL VISION, where the direction is
maintained in the face of contrary evidence, there may be no such evidence in
KILLER FEATURE. The KILLER FEATURE antipattern may result even if the fea-
ture in question does indeed turn out to be very important to the marketplace.

Pattern: RELEASE COMMITTEE

Problem Statement. How do you get teams with conflicting perspec-
tives and agendas in sync to meet a planned release date?

Context. A product organization with a dozen to several hundred peo-
ple, including product support, marketing, architecture, testing, and design, is
developing and supporting an architecture. These groups do not all report to
the same manager. A configuration control board, or similar process, is in
place and the organization has committed to a set of features for a particular
release. The product involves several components that must be coordinated for
customers to get the most value from it.

Forces. Many different groups within an organization are involved
when releasing a version of an architecture. Participating groups may include
development, marketing, testing, quality assurance, configuration manage-
ment, and subcontractors. Groups that report to different managers may have
conflicting, and often hidden, priorities and agendas. It can be particularly dif-
ficult, for example, for a manager to state the obvious when a positive change
could threaten the size or viability of his or her group. Even when everything
is arranged perfectly, group dynamics produce unexpected results [Smith87].
Larger groups take more time to make decisions than smaller groups. When
one group is clearly behind, other groups may try to play SCHEDULE CHICKEN

and take advantage of the delay and avoid blame. That is, groups may believe
they can get away with risking a delay if they think another group will be even
further delayed [Olson98].

Putting Rhythm into Practice 85

PH021-Dikel04 1/8/01 11:00 AM Page 85

Solution. Hold regular and formal meetings that include each critical
stakeholder in the organization to guide the progress of the release. During the
meetings, review changes in product features and priorities, so that product
documentation, marketing promises, public relations, testing, and develop-
ment are in agreement. Where appropriate, metrics should be used to measure
the progress of the release. At these meetings, commitments and dependencies
are shared, and decisions are made about how to proceed. Document and dis-
tribute the decisions that are made at the meetings. The members participating
in the committee should be stable. There should be consistent membership at
the meeting, and the participants also need to have enough authority to make
decisions. The RELEASE COMMITTEE differs from a configuration control board
in that it focuses on the execution of a release, whereas a configuration control
board is typically concerned with the content of a release.

Result. As a result of the pattern, surprises are avoided, as are unnec-
essary delays. When issues arise, they can be fairly and adequately represent-
ed, and then quickly resolved. Because all stakeholders are represented, there
is a better understanding of the context in which decisions are made. The use
of metrics can help focus the discussion and make it easier for the participants
to come to a common understanding on the progress of a release. The commit-
tee improves the timing of releases by enhancing coordination of the groups
involved. The committee’s decision-making process also improves the content
and quality of releases, and it helps ensure that consistent information about
the release is given to customers.

Consequences. The practice is time-consuming, especially if the meet-
ings do not have clear agendas established and enforced. The REPRESENTATIVE

RELEASE COMMITTEE variation addresses some of these concerns for large orga-
nizations. The meeting may provide a forum for some groups to air pet peeves
and introduce other obstacles—including participants who are not essential for a
successful release, but who can make the RELEASE COMMITTEE less efficient.
Because the RELEASE COMMITTEE can exert a strong influence on the execution
of a release plan, a CORNCOB (a curmudgeon of the unwelcome kind) may cause
havoc as a member of the committee [BrownW98].

Rationale. Releases of large, complex software products typically
involve a variety of groups that report to different managers. This makes later-
al integration difficult, which can lead to risks, poor decisions, and delays. A
RELEASE COMMITTEE provides a structure in which stakeholder groups work
together to deliver an architecture or other major software component. This
coordination can improve the delivery of content between the groups responsi-
ble for delivery. By avoiding missteps, the committee can also help maintain
the tempo of a release. Stable membership is needed so that issues resolved

86 Rhythm: Assuring Beat, Process, and Movement

PH021-Dikel04 1/8/01 11:00 AM Page 86

during one meeting will not resurface at later meetings. If participants do not
have enough authority to make decisions, then decisions cannot be made at the
meeting, or the decisions made will have no influence on the organization.

Example. This practice is used by a number of companies including
Allaire, the maker of the ColdFusion Web application development environ-
ment. Allaire kicks off a new release with the stakeholders at an off-site meet-
ing. A release plan is created at this meeting, and it ensures that all of the
departments are in agreement regarding the priorities of the release. Then, as
the release progresses, the group meets every week. These weekly meetings
make commitments and dependencies visible to all of the participants.
Changes are recorded in a release plan.

Variation: REPRESENTATIVE RELEASE COMMITTEE. If the organiza-
tion is very large, it may not be feasible to have direct participation in the
RELEASE COMMITTEE. A REPRESENTATIVE RELEASE COMMITTEE can be used
instead. A telecommunications firm had a very large product that involved
more than 20 distinct organizations. Release committee meetings to determine
whether a checkpoint had been passed were bogged down when participants
began to air pet peeves and push pet features and often surprised everyone by
blocking releases with issues that had not been previously raised. They adopt-
ed a three- (and later four-) member REPRESENTATIVE RELEASE COMMITTEE.
While each stakeholder was not a direct participant in the committee, each
member of the committee explicitly represented a stakeholder. If a stakeholder
had an issue that needed to be addressed by the committee, the stakeholder
raised the issue through this committee representative. The group used met-
rics, such as the number of outstanding defects, to assess the progress of a
release. After adopting the smaller release committee, issues were resolved
more quickly and meetings were more focused and productive.

Related Patterns and Antipatterns. The RELEASE COMMITTEE needs
participants who have sufficient authority to approve changes. If one group is
delayed, SCHEDULE CHICKEN may ensue [Olson98]. A CORNCOB may wreak
havoc if placed on a RELEASE COMMITTEE [BrownW98]. Although they focus
on the software development process, some of the patterns in Ward
Cunningham’s EPISODES pattern language could be adapted for use by a
release committee. For example, TECHNICAL MEMO could be used to document
the committee’s decisions [Cunningham96].

Putting Rhythm into Practice 87

PH021-Dikel04 1/8/01 11:00 AM Page 87

Criterion 2: Architecture users have a
high level of confidence in the timing
and content of architecture releases

When no overriding rhythm is set for an organization, particularly a large one,
executives set the pace by reacting to internal or external forces by imposing
panic deadlines on their staff. These panic actions are rarely coordinated with
one another and create dysfunctional rhythms that wreak havoc on the timing
and content of architecture releases, in the same way that a mixer with three
beaters running in one bowl would quickly drain a bowl and splatter a room. If
architecture users do not trust the timing and content of architecture releases,
then the users may not plan to adopt new architecture releases, or they may
choose another architecture altogether. Therefore, a lack of user confidence in
the timing and content of architecture releases is a warning sign that a good
rhythm has not been established.

Antipattern: SHORTCUT

General Form. You are the leader of an architecture team that has
established a good rhythm. There are regular builds and releases. However, it
is becoming difficult to maintain your tempo, schedules have slipped, and you
are now facing intense pressure to get back on track. In an attempt to sustain
the tempo, you have decided to skip a number of process steps (see Figure
4.10). Peer reviews might be omitted, or a late change might be introduced
without going through the entire configuration management process. While the
immediate tempo is retained by the move, it sows the seeds for later disrup-
tion. Defects that might have been detected in the skipped steps can surface
later when they will be more expensive to correct.

88 Rhythm: Assuring Beat, Process, and Movement

Shortcut

Drop Pass

Figure 4.10 The SHORTCUT antipattern occurs when processes are skipped
to maintain tempo.

PR
O

G
RE

SS

TIME

SHORTCUT

PH021-Dikel04 1/8/01 11:00 AM Page 88

Forces. There is often intense schedule pressure in software develop-
ment, and this is no less true for organizations trying to establish and maintain a
rhythm. Customers, stakeholders, and managers can all bring significant pressure
to complete a release. When deadlines loom, there is a tendency to make deci-
sions with a short-term benefit in exchange for consequences that are longer-
term. The benefits of such decisions are immediately visible, while the
consequences are less tangible and may not be immediately apparent. Defects are
typically less expensive to correct the sooner in the life-cycle they are detected.

Solution. The appropriate way for processes to be enforced depends on
the culture of the organization. In some organizations, periodic software audits
may serve to ensure that the processes are followed. However, in many organiza-
tions, audits are not an effective way to change or enforce behavior. The actions
of senior management can alter behavior more directly. Are there sufficient
resources allocated to perform all the planned steps? Do managers create clear
expectations so that processes are followed? Do they inquire if these expecta-
tions are met? Management actions can have a dramatic impact on whether the
organization takes shortcuts to maintain the appearance of rhythm.

Rationale. In these days of shorter and shorter product cycles, there is
a great deal of pressure to take shortcuts. Ironically, organizations that try to
establish a rhythm may be even more susceptible. A good rhythm is composed
of tempo, content, and quality, but of these, tempo is by far the most visible.
Action is needed to counter-balance the tendency to maintain tempo at the
expense of content and quality. In the long run, such sacrifices undermine
what makes rhythm valuable in the first place.

Example. An architecture component developer for a large command
and control system had well-established processes for creating and delivering
new component releases. The component team was reorganized and received new
managers. Just after this management change, the primary customer for the com-
ponent requested some minor changes. In an attempt to please their customers,
the new managers abbreviated the established delivery process, but in doing so
several defects were introduced. Rather than pleasing the customer with their
responsiveness, a defective component was delivered, followed by a delay as the
component team redelivered the component using the established process.

When is This Antipattern a Pattern? Sometimes it does make sense
to trim steps out of a process or tailor a process for a particular situation if it
does not add value in that context (Chapter 7, Simplification). SHORTCUT

might also make sense if the project is in a do-or-die situation where long-
term consequences are not as important because the company might not be
around long enough to experience them. Skipping a step that both internal and

Putting Rhythm into Practice 89

PH021-Dikel04 1/8/01 11:00 AM Page 89

external stakeholders are expecting should be approached with great caution
and validated by a seasoned manager. In these situations, the organization
needs enough discipline to record the shortcuts and mitigate the consequences
once the immediate crisis has passed.

Variation: REDEFINE THE RULES. Instead of explicitly skipping a
process step, this antipattern sometimes emerges when groups REDEFINE THE

RULES. For example, a beat might be defined as completing a major milestone
every month, and one of the criteria for completing a milestone is having no out-
standing high-impact defects. In this variation of the antipattern, a group rede-
fines critical defects to lower-impact classifications in order to pass the milestone.
It appears that the organization has maintained a regular beat but at the price of
burying a potentially significant risk. Additional effort and discipline are needed
to manage the risk because it has been hidden from the usual processes.

Related Antipatterns and Patterns. SHORTCUT can result when there is
too much emphasis on the timing of DAILY BUILD AND SMOKE TESTS but not
enough emphasis on content of the builds or whether they are used [Cabrera99].

Pattern: DROP PASS

Problem Statement. How do you maintain the tempo of architecture
releases when components are delayed?

Context. The architecture is released in regular intervals; for example,
the architecture could have annual major releases and quarterly minor releas-
es. Further, there are a number of independently developed components in the
architecture. The release in question involves changes to a number of these
components. The enhancements made to delayed components are not among
the most essential features of the architecture release. Even though an effort
has been made to get a component back on schedule, it appears that it will still
be delayed.

Forces. The developers using the architecture could be adversely
affected if the component release date is delayed. If the delay is due to one
component, the other component owners might be tempted to try to play
SCHEDULE CHICKEN [Olson98]. Not all components are equally important to
the developers using the architecture, but all customers may be affected if an
architecture release is delayed. Many users of an architecture do not read the
release notes in detail and may not see notices about delayed or dropped fea-
tures. It is very hard for suppliers to fully understand the consequences of a
delayed component.

Solution. When it appears that revisions to a component will not be
completed in time, alert stakeholders as soon as you think the feature might not

90 Rhythm: Assuring Beat, Process, and Movement

PH021-Dikel04 1/8/01 11:00 AM Page 90

be included and verify that it is not critical. Go ahead with the architecture
release without changes to the delayed component. To avoid the problem of
users who do not read or see announcements about the change in features,
make sure to drop the feature from the preliminary releases, so they experience
the changes in alpha or beta, and not in the production release. Incorporate the
changes to that component in a later release of the architecture.

Result. The tempo of the release is maintained. Activities planned
after the release of the architecture can proceed as scheduled. The practice
may also motivate component owners to finish their revisions on schedule.
Developer trust grows because the architecture release occurs when promised.
The developer also has more confidence that the next release will occur as
planned.

Consequences. The release will have less functionality than if the
release was held up for the component. Developers with plans to use the new
features in the delayed component will need to make alternate plans. If cus-
tomers do not trust the architecture provider, the announcement of a DROP PASS

may prompt them to find an alternate provider. Unless other stakeholders are
involved in the decision to drop a feature, problems could surface. For example,
the product could fail tests because the test cases were not updated to reflect the
change, or marketing could provide incorrect information to customers.

Rationale. Like a hockey player using a drop pass to give the puck to
a teammate following from behind, this pattern moves a revised component to
a following release. The pattern calls for an explicit tradeoff between the
tempo and content of a release. Because there are many activities tied to the
release of an architecture, delaying the release of the entire architecture could
disrupt many organizations.

The pattern only works if the delayed component is not essential for the
new architecture to be valuable to the developers who plan to use it. If the
delayed component is critical, it may make more sense to delay the release
instead. The onus is on the dependent parties here. They are the ones who can
best judge the impact of postponing a component. The consumers have the oblig-
ation to push back on the suppliers if a component will be delayed too long.

Example. Microsoft uses a common product architecture so that new
features can be written once and shared across products. They also release
their applications over a number of time-paced intervals. They can drop pass
low-priority features to the next planned release to make sure that critical fea-
tures are included in the current release [Eisenhardt98].

Related Patterns and Antipatterns. A RELEASE COMMITTEE can be
used to help mitigate the consequences of DROP PASS by ensuring that all the

Putting Rhythm into Practice 91

PH021-Dikel04 1/8/01 11:00 AM Page 91

stakeholders are in agreement and aware of the changes. Many of the patterns
from Linda Rising’s Customer Interaction Patterns can be used to communi-
cate the impact of a DROP PASS with customers [Rising99].

Criterion 3: Explicit activities are
coordinated via rhythm

Software architectures have stakeholders in many different organizations. A
shared architecture rhythm helps these autonomous groups to work together
across organizational boundaries because it helps establish shared assumptions
about when and how key events will occur. For example, if a product develop-
er knows that there is a major architecture release annually and quarterly
maintenance releases, the developer could time product releases to follow the
expected architecture releases and take advantage of new architecture features.

Rhythm also coordinates activities across different groups in a firm. A daily
or weekly build can coordinate activities across a development group. A human
resources apartment can coordinate hiring to acquire developers early in a
release cycle.

When rhythm is not a coordinating presence among stakeholders, deci-
sions and transitions become more cumbersome. Human resources could hire
staff the development group is not prepared to integrate into its team. Additional
effort must be spent when rhythm is lacking to coordinate activities and to
recover from transitions that occur at inopportune times. Developers might get
slowed down because a shared component does not integrate cleanly.

Antipattern: BROKEN LOADS

Alias: BROKEN BUILDS

General Form. You are the leader of a team that has established regu-
lar builds. However, even though the code is checked in, compiled, and tested
regularly, it does not always do so cleanly. Broken compiles or failed test
cases are not considered to be a big deal. The team may believe it will be pos-
sible to straighten out the inconsistencies later in the process, or perhaps the
team is using an advanced configuration management system to continue
working and still keep track of the code versions in conflict. However, when it
comes time to get a release out the door, it takes much longer to get all the
pieces to work together than was anticipated.

Forces. There are many benefits from regular builds; however, they
require significant effort to implement, especially for very large applications.
In large systems it may not be feasible to rerun all test cases after each build,
and managing test case dependencies can be especially challenging. If a build

92 Rhythm: Assuring Beat, Process, and Movement

Broken
Loads

Synchronize
Releases

PH021-Dikel04 1/8/01 11:00 AM Page 92

breaks, it may be tempting to put off resolving the defect if there is other more
interesting work to do. If the build breaks, the software is in an unknown state,
and so larger problems may remain hidden. An advanced configuration man-
agement system can give the developers a false sense of security to manage
multiple codebases when a build breaks. Such a system could allow develop-
ers to continue programming without stopping for the build to be repaired and
without addressing the causes of the broken load.

Solution. Establish a commitment to regular builds. Management must
clearly communicate to the developers that the regular builds are expected to be
successful. The builds should include not only compiling the product, but also
some form of automated testing. The process for regular builds may also be
modified to prevent new work from moving forward until a broken build is cor-
rected. Similarly, failed test cases that had been previously successful should be
addressed immediately. Some organizations use social pressure on developers
who break a load; that is, developers who break a load may be required to wear
a proverbial dunce cap. Caution—this particular strategy has the potential to be
counterproductive, depending on the culture of the organization.

Rationale. Builds must be used to be valuable. If they are not used as
baselines, and if they are not used to keep the system in a known state, then
they cannot help the organization maintain a rhythm. While a regular build
process does introduce a regular tempo, if the build is always breaking, then
the benefit of this tempo and the content delivered by the build is lost (see
Figure 4.11). An effective regular build process can promote communication
among developers and other stakeholders. For example, in organizations with
such a build process, there is more cooperation among developers to ensure
that their code works together so they can avoid breaking a load. When builds
start breaking, it is a sign that this informal coordination among the compo-
nent owners has deteriorated as well.

Putting Rhythm into Practice 93

Figure 4.11
BROKEN LOADS are a sign that
RHYTHM is breaking down.

PH021-Dikel04 1/8/01 11:00 AM Page 93

Example. A group at a telecommunications firm had a process of com-
pleting weekly builds, but managers had not placed a priority on maintaining
this schedule. When a build was not successful, development on new features
continued as a “managed exception.” An internal review identified this as a
problem, and corrective action was taken. An engineer submitted new code that
caused the build to break. The engineer had failed to coordinate the changes in
his component with the other component owners before submitting the change.
The engineer received a call in the middle of the night and received a visit from
a vice-president first thing the next morning. The expectation was communicat-
ed to the entire team that both the schedule and the quality of the weekly builds
needed to be maintained. After this new emphasis on rhythm was established,
the team improved its ability to deliver on schedule.

The need to address BROKEN LOADS is often balanced with the need to
move forward. At one leading software firm, when a build breaks, a series of
hot bugs are entered and dispatched to developers as quickly as possible. The
developer must drop everything to fix the bug, and a fix is typically expected
within minutes, or hours at worst. Many daily builds will generate no signifi-
cant bugs, while others may generate five or ten (for a product with several
million lines of code). The build lab waits for fixes to come in and then iter-
ates the build. At a certain point in the day they will abandon the current day’s
build and start preparing for the next.

When is This Antipattern a Pattern? Builds may occasionally break,
and this may not be a big deal. But when this becomes a recurring event, then
it is a problem that must to be resolved.

Variation: CONTINUOUS BUILDS. Some groups have taken regular
builds a step further by using CONTINUOUS BUILDS. Every time code is checked
in, it must pass through an automated system which forces a complete rebuild
and “sniff test” of all affected code before the check-in is committed. Teams
that use continuous builds will have a daily build available for the developers
as well.

This approach is similar to that of eXtreme Programming. In XP, no
code goes more than a couple of hours without integration. When code is inte-
grated, the latest release is used, and it is expected to pass all of the test cases
[Beck00].

Related Antipatterns and Patterns. This antipattern is an example of
DAILY BUILD AND SMOKE TEST gone awry [Cabrera99].

94 Rhythm: Assuring Beat, Process, and Movement

PH021-Dikel04 1/8/01 11:00 AM Page 94

Pattern: SYNCHRONIZE RELEASES

Problem Statement. How can you accelerate the release of products
built on your architecture?

Context. There have been a number of regular releases of your archi-
tecture, and there are a number of trusted developers who use the architecture
to create products that add value to it. These developers are partners who
receive early access to releases of the architecture so that they can provide
feedback and accelerate development of their own products. The planned fea-
tures for the release have already been determined.

Forces. Increasingly, companies are partnering with other vendors to
provide complete solutions for their customers. This means that when a new or
revised architecture comes to market, other complementary products are also
needed for the architecture to be successful. It takes time for these comple-
mentary products to come to market. Customers may hold off on adopting an
architecture release or upgrade until these complementary products become
available. If the complementary products are available more quickly, then
architecture adoption can be accelerated.

Solution. Work with your partners to determine the order in which the
features of the architecture should be delivered for them to develop products
using the architecture. To the extent possible, include these features in the
early access releases of the architecture. If there are changes to the architec-
ture that require substantial changes in complementary products, then these
changes should be visible in the first preliminary releases. Communicate with
the partners about when to expect which features. In exchange for adjusting
the early releases in this manner, establish agreements with partners to quickly
bring to market their products that include or require your architecture.

Result. When this pattern is successfully applied, there is little or no
delay between the release of the architecture and the release of value-added
components built on the architecture. With more components available that
work with the architecture, architecture adoption will be quicker and more
widespread.

Consequences. Not all developers will have the same needs, and so it
may not be possible to coordinate the features incorporated in the releases in a
way that satisfies everyone. The optimal release plan for the architecture team
may differ from the optimal release plan for the partners. Some firms may be
accused of “playing favorites” if they give early access to some firms but not
others. Some partners may not be interested in making the commitment asso-
ciated with synchronizing their releases; they may wish to wait until the archi-
tecture has gained market acceptance.

Putting Rhythm into Practice 95

Builds must be
used to be valu-
able. Rhythm
synchronizes con-
tent; content
delivers value.

PH021-Dikel04 1/8/01 11:00 AM Page 95

Rationale. Synchronizing releases accelerates the availability of com-
plementary products because the needs of the partners are incorporated into
the release plans and communicated back to the partners. The tempo and con-
tent of the architecture releases can be coordinated with that of the partners
using the architecture. Partners are better able to prioritize their own develop-
ment processes. Because the needs of the partners are met, they can bring
complementary products to market more quickly.

Example. An operating systems development group noticed that it
would usually take several months after the release of a new version of the
operating system before compatible products and tools from third parties
reached the market. The group partnered with the third-party developers to
find out which features were needed for the early developer releases of the
operating system. By allocating features across the developer releases in this
fashion, the third-party developers were able to get more work done more
quickly. Once the practice was adopted, new releases of the operating system
were simultaneous with the release of compatible third-party products.

There are also examples of this pattern in other industries. A large
household goods manufacturer adjusted the timing of its product launches to
synchronize with the shelf-planning cycles of large retailers such as Wal-Mart
and Target. The practice increased the shelf space for the manufacturer’s prod-
ucts, and it helped the retailers stock the newest products [Eisenhardt98].

Related Patterns and Antipatterns. Many of the patterns from Linda
Rising’s Customer Interaction Patterns can be used to work with partners to
establish SYNCHRONIZED RELEASES. IT’S A RELATIONSHIP, NOT A SALE is partic-
ularly relevant [Rising99].

Summary

Rhythm coordinates the activities of the architecture stakeholders, and it helps
spur progress of the architecture team. There are three elements to rhythm—
tempo, content, and quality. Tempo is the frequency with which the same type
of handoff occurs between groups. Content is the delivery of value from one
group to another. Quality is the set of activities needed to develop and main-
tain an architecture without deficiencies. When these three elements are pre-
sent, an organization has a good rhythm.

Rhythm is important for architecture-based development because so
many different organizations are involved in the development and use of an

96 Rhythm: Assuring Beat, Process, and Movement

PH021-Dikel04 1/8/01 11:00 AM Page 96

architecture. It is not possible to manage all of these groups from the top
down, so rhythm is needed to coordinate these autonomous groups.

Rhythm has other benefits. First, it enables the architecture stakeholders
to focus on transitions. Transitions are critical for success, but they frequently
do not receive the attention they warrant. Rhythm also enables the architecture
stakeholders to create an urgency that drives progress forward.

While there are many practices that support rhythm, such as regular builds
popularized by Microsoft, there are a number of pitfalls. This chapter explored
some of these pitfalls and described solutions to some of the problems encoun-
tered by organizations seeking to establish and maintain a rhythm.

Other Applicable Patterns and Antipatterns

There are other patterns that can be used to put the principle of Rhythm into
practice, as well as antipatterns to avoid along the way. Table 4.2 lists organiza-
tional patterns and antipatterns cataloged in the 2000 edition of The Patterns
Almanac [Rising00]. Table 4.3 lists antipatterns from Antipatterns: Refactoring
Software, Architectures, and Projects in Crisis [BrownW98].

Table 4.2 Organizational Patterns and Antipatterns That Can Shape Rhythm [Rising00]

BACKLOG [Beedle99] PHASING IT IN [Coplien95]

CASUAL DUTY [Olson98] PRODUCTION POTENTIAL [Taylor99]

COMPLETION HEADROOM [Cunningham96] PROGRAMMING EPISODE [Cunningham96]

COUPLING DECREASES LATENCY [Coplien95] PULSE [Taylor99]

DECOUPLE STAGES [Coplien95] SACRIFICE ONE PERSON [Cockburn98]

DELIVERABLES TO GO [Taylor99] SCHEDULE CHICKEN [Olson98]

DIVIDE AND CONQUER [Coplien95] SCRUM MEETINGS [Beedle99]

DON’T INTERRUPT AN INTERRUPT [Coplien95] SOMEONE ALWAYS MAKES PROGRESS [Cockburn98]

EARLY AND REGULAR DELIVERY [Cockburn98] SPRINT [Beedle99]

EFFECTIVE HANDOVER [Taylor99] TAKE NO SMALL SLIPS [Coplien95]

GET INVOLVED EARLY [DeLano98] TAKE TIME [DeLano98]

GOLD RUSH [Cockburn98] TEAM PER TASK [Cockburn98]

HUB, SPOKE, AND RIM [Coplien95] TIME TO TEST [DeLano98]

Other Applicable Patterns and Antipatterns 97

PH021-Dikel04 1/8/01 11:00 AM Page 97

Table 4.2 (Continued)

INTERRUPTS UNJAM BLOCKING [Coplien95] WORK GROUP [Cunningham96]

KEEP IT WORKING [Foote99] WORK QUEUE [Cunningham96]

LONG POLE IN THE TENT [Olson98] WORK QUEUE REPORT [Cunningham96]

MICROCOSM [Cockburn98] WORK SPLIT [Cunningham96]

NAMED STABLE BASES [Coplien95]

Table 4.3 Antipatterns That Can Derail Rhythm [BrownW98]

ARCHITECTURE BY IMPLICATION

FEAR OF SUCCESS

FIRE DRILL

IRRATIONAL MANAGEMENT

PROJECT MISMANAGEMENT

SMOKE AND MIRRORS

THE GRAND OLD DUKE OF YORK

THROW IT OVER THE WALL

WALKING THROUGH A MINEFIELD

WARM BODIES

98 Rhythm: Assuring Beat, Process, and Movement

PH021-Dikel04 1/8/01 11:00 AM Page 98

