
4/20/05

Ar
ch

ite
ct

ur
e Architecting

Architects

BREDEMEYER CONSULTING, Tel: (812) 335-1653

ARCHITECTURE RESOURCES
For Enterprise Advantage

http://www.bredemeyer.comhttp://www.bredemeyer.com

Conceptual Architecture Action Guide
Purpose: The intent of the conceptual architecture is to direct attention at an
appropriate decomposition of the system without delving into the details of
interface specification. Key constructs are identified, including significant
architectural elements such as components and relationships among them,
as well as architectural mechanisms. Architectural mechanisms are designed
to address cross-cutting concerns that cannot be localized within a single
component.

Key Activities:
• Determine architecturally significant requirements.
• Create the high-level organizing structure of the system: identify

architectural components, their responsibilities and relationships.
• Identify architectural mechanisms to address cross-cutting con-

cerns.
• Validate that the architecture meets stakeholder goals, and where

it does not, assess the impact.

by Ruth Malan and Dana Bredemeyer
Bredemeyer Consulting
ruth_malan@bredemeyer.com
dana@bredemeyer.com

From “Chapter 5: Conceptual Architecture”. The book is titled Software Architecture
Action Guide, by Ruth Malan and Dana Bredemeyer. Look for it in 2005. Please see
our note about the book towards the end of this paper.

2 © 2004 BREDEMEYER CONSULTING http://www.bredemeyer.com

Introduction
In this Action Guide, we distill the essentials of the Conceptual Architecture phase of the Visual Architect-
ing Process. The conceptual architecture collects together decisions relating to the key architectural con-
structs in the system.

Purpose of Conceptual Architecture
The intent of the conceptual architecture is to direct attention at an appropriate decomposition of the sys-
tem without delving into the details of interface specification. Key constructs are identified, including sig-
nificant architectural elements such as components and relationships among them, as well as architectural
mechanisms. Architectural mechanisms are designed to address cross-cutting concerns (i.e., those not
localized within a single component).

By focusing on key constructs and abstractions rather than a proliferation of technical details, concep-
tual architecture provides a useful vehicle for communicating the architecture to non-technical audiences,
such as management, marketing, and many users. It is also the starting point for Logical Architecture,
which elaborates the component specifications and architectural mechanisms to make the architecture pre-
cise and actionable.

The conceptual architecture diagram identifies the system components and interconnections between
components, and the accompanying descriptions document the responsibilities of each component. Struc-
tural choices are driven by tradeoffs among interacting or even conflicting system properties or qualities,
and the rationale section articulates and documents this connection between the architectural requirements
and the structures (components and connectors, or mechanisms) in the architecture.

Inputs to Conceptual Architecture

Higher-level Architecture. If your organization’s enterprise architecture (EA) or product family architec-
ture team has selected or created a Reference Architecture to be used across the enterprise, that is presum-
ably referenced in your meta-architecture. At any rate, this Reference Architecture will form your starting
layout for the architecture you are creating or updating. Yes, it will constrain your options as you decide on
components and responsibilities, but it will also ensure consistency and leverage across the organization,
and it can give you a head-start by eliminating a whole set of choices that the EA team has already weighed
and ruled out. These are, afterall, the kinds of reasons that architecting is done at all.

Artifacts and learnings from the Init/Commit and Meta-Architecture Phases. The architecture vision,
objectives, principles and strategies, key concepts and metaphors, and other models, decisions, and think-
ing from the preceding phases, as well as the requirements and other drivers that were input to those
phases, are all input to the conceptual architecture phase.

Requirements. Many organizations have adopted the practice of assigning business analysts or require-
ments teams to collect requirements. It is unfortunate that this is generally done without (practically) any
input from the architects, and the requirements specification is “tossed over the wall” at the architects.
Nonetheless, if requirements specifications already exist, use them as your starting point. A just-enough
process has no place for repeating work that has already been done!

CONCEPTUAL ARCHITECTURE ACTION GUIDE © 2004 BREDEMEYER CONSULTING 3

Conceptual Architecture Activities

Conceptual Architecture Requirements: Establishing what is Architec-
turally Significant
If requirements specifications already exist, use them. That said, wherever we have influence, we strongly
encourage architects to partner with business analysts or the requirements team, rather than following in
their trail. Ultimately, the architect (or architecture team) should be responsible for the architecturally sig-
nificant set of requirements.

We have to live in a world of compromise. No system can have ultra-performance, ultra-quality, ultra-
scalability, ultra-you-name-it, and be cheap! By compromise we do not mean settling for the mediocre, but
rather picking where to excel. We have to define where we will differentiate our system, and where we will
accept competitive parity or “good enough” for our market segment(s).

Now, are your business analysts going to make these tradeoffs with keen insight into their implica-
tions? Are they thinking about this system, and its future variations? Are they thinking about what technol-
ogy makes possible, and what it makes extremely difficult? If so, they are performing the up-front function
of architects perfectly well, and you can leave defining the system qualities to them. If not, leverage what
they are doing, and make sure that you understand enough about your customers, as well as your business
strategy and organization's core competencies, to be able to define and prioritize the system properties
(also known as system qualities or non-functional requirements) that are important to the market seg-
ment(s) you are addressing, and to your business.

Understand System Functionality. In meta-architecture, we collected just enough requirements to be
able to make at least a preliminary but meaningful pass at scoping the system. Now we explore the func-
tional requirements further, so that we understand sufficiently what functionality the architecture must sup-
port. We find use case descriptions to be a useful tool here, as they lend themselves well to communicating
with stakeholders and to behavioral analysis in the definition and validation of the system architecture.

Capture System Properties. Architecture is all about making tradeoffs (or compromises) to achieve sys-
tem goals as best we can. To do this, we have to understand what specifically we mean by the system prop-

erties and what achievement level will satisfice1 our goals. Let us make this clearer with an illustration.
We want the software architect (or architecture team) be held accountable for the structural soundness

of our software system, though of course many others will have a hand in creating the details of the struc-
ture. But what does “structural soundness” mean? Maybe we want it to mean “not brittle” where “brittle”
means changes to the system are highly error-prone; or maybe we want it to mean “the structure is capable
of accommodating load” where “load” may be transaction volumes within a certain range; or maybe we
want it to mean it “will not yield to stress” where “stress” may be dramatic changes in scale; and so on. I'm
sure you get the point—what we mean by structural soundness differs for each system. We must be as pre-
cise as we can be about what we mean for this system, and be clear about what is good enough.

We use a qualities definition template to guide us in making system properties unambiguous. Where
possible, we quantify the system property goals, but some goals like “portability” are hard to quantify and
we find test cases to be a useful tool for exploring just what we mean by the property and for providing a
means to validate that the architecture actually meets the goal.

Understand Constraints. Understand the constraints you need to work within, including third party or
legacy components and systems that are predetermined to be part of, or that must interact with, your sys-

1. This term is used in industrial engineering and decision science (introduced by Herbert Simon in his Models of Man,
1957) and means good enough but not necessarily the best.

4 © 2004 BREDEMEYER CONSULTING http://www.bredemeyer.com

tem. Also understand organizational constraints, such as resources and time available, as well as factors
such as the capabilities of the development staff, being watchful of shortfalls in critical areas.

Determine What is Architecturally Significant. Given a set of requirements, or in the process of collect-
ing requirements, the architect needs to assess what is architecturally significant, for these are the require-
ments the architect will focus on. Architecturally significant requirements are those that

• are representative: they capture essential functionality of the system (services the system must per-
form)

• have broad coverage: exercise many architectural elements
• challenge the architecture: identify issues/risks; highlight stringent demands on the architecture

(e.g. performance requirements); are likely to change
• involve communication/synchronization with external systems

Conceptual Architecture Specification: Identifying the Major Elements

Review Proven Approaches, and Look For Opportunities to Create Architectural Advantage.
Actively look for great ideas, and passé but tried-and-true ideas—review past architecture work and archi-
tecture patterns, and approach architect peers in your organization and “friendly” external groups such as
suppliers or partners to share their strategies for addressing similar challenges to the ones you face. It is
important to innovate, and you can buy time for such creativity by leveraging proven solutions. This is
what is done in the automotive and other mature industries. In such industries, dominant designs have
emerged that allow architects to focus attention on differentiation rather than the basic organizational struc-
ture of the system.

Take the trucking industry. Architects are not arguing about the basic organization, the systems, sub-
systems and components of trucks. But when NASA showed that a roof fairing on trucks would reduce
drag over the tractor and improve fuel efficiency by some 20%, the industry was slow to move. Kenworth
(we believe, and are working to validate this) introduced the rooftop fairing and for a while it cleaved the
industry into the die-hard cowboys of the highway clinging to the fuel-guzzling box-shaped cabs of old,
and those who were willing to risk ridicule in exchange for industry-reshaping fuel savings. Fuel savings
won the day, and though others followed, Kenworth had strong early mover advantages.

Design the Organizing Structure of the System. During this phase we identify the major elements of

the system. In doing so, we think about what responsibilities to put together in a component1 and what to
split apart. We think of alternative ways to decompose the system, and assess these alternatives against
general principles of good architecture as well as the specific requirements and constraints, and earlier
decisions, impacting our architecture. General architecting principles include divide and conquer, loose
coupling among components and high cohesion within components, independence and encapsulation.
Applying these principles helps us meet a number of system goals, such as understandability, and work
partitioning so that teams and individuals can work more independently and make more compelling contri-
butions by having a clear focus of responsibility.

These general principles and the specific requirements in our system, interact. For example, in a tim-
ing-critical imaging system, we need to weigh carefully whether to split apart probe hardware-related
responsibilities from image processing responsibilities. If we put them together, we make the system vul-
nerable to high cost of change every time the hardware changes, because the impact of the change is not
isolated. If we pull them apart, we face inter-component communication overhead each time these two
components need to interact to achieve a piece of functionality.

We use a (conceptual) architecture diagram to show components and their relationships, enabling us
to think about, discuss and document the high-level conceptual organization of the system. The component

1. These are conceptual components, not physical entities. The latter will be dealt with in the Execution (a.k.a. Physical)
Architecture.

CONCEPTUAL ARCHITECTURE ACTION GUIDE © 2004 BREDEMEYER CONSULTING 5

responsibilities are documented on the component responsibility collaborator + rationale1 (CRC-R)
description for the component. We add a rationale section to our template, reminding architects to record
the rationale for the choices made in assigning responsibilities to this component and collaborators, provid-
ing a link to requirements, objectives and strategy. This helps make the experience and reasoning of the
architect explicit for others to learn from. We also have a notes section on the template, to record forward-
looking thinking that should be referred to in logical or execution architecture, or downstream during
detailed design and development.

Create the Conceptual Design of Architectural Mechanisms. The system decomposition isolates
chunks of the system and in doing so addresses some important properties (e.g., buildability and maintain-
ability, portability, and reuse). Cross-cutting concerns are those that remain to be addressed across several,
or even all, components. Identify which system properties are like this, and formulate mechanisms to
address these cross-cutting concerns. Typical examples include security, system integration, session man-
agement, and configuration management.

One approach is to take each cross-cutting concern in isolation, first. This allows us to explore an ide-
alized design until we bump up against the limits of technology and our own experience and innovative
ideas. Of course, in the real world we do not get to focus exclusively on one system property. But this exer-
cise allows us more creative freedom, and establishes what the limits are. We can then work on a solution
that makes tradeoffs across the system properties, recognizing that we will have to make compromises to
reach a solution that is good enough across the set of interacting, and sometimes conflicting, system prop-
erties.

Time is usually invoked as the argument against this approach, but exploring alternative approaches to
addressing cross-cutting concerns at the conceptual design level is relatively inexpensive, especially when
compared to the status quo approach of trial and error problem-solving during code development!

Often we need to explore the behavior of the system in designing mechanisms, and we find informal
component collaboration diagrams or sequence diagrams helpful here. But remember that during concep-
tual design we are sketching out the approach, not pursuing the details of interfaces and protocols so we
work with abstractions, not details like messaging syntax at this point. Of course, we add the caveat that if
doing so becomes important for some reason, our iterative process allows us to take a temporary dive into
the details of some aspect of the system before pulling back up to a higher level of abstraction and matur-
ing the architecture at that level.

As we design architectural mechanisms we may find ourselves needing to refactor the components. We
allow ourselves this freedom, until we are satisfied that we have taken all the paramount system capabili-
ties (functions and properties) into account and we can explain and motivate how the architecture achieves
them.

Document Assumptions, Assertions, Decisions, Issues and Ideas. A slew of architecture decisions
are reflected in the conceptual architecture diagram and models of architectural mechanisms. These deci-
sions are grounded in assumptions, experience, tradeoffs, and so on. Unless we document the reasoning
behind, and rationale for, the decisions while it is all fresh in memory, we will become overcome by pres-
sures of downstream tasks and the rationale will be lost. To put it bluntly, too often the only thing harder
than getting the architects to write down their designs, decisions and rationale is getting the intended audi-
ence to read it! But that is no excuse. We have to create a record, for an undocumented architecture does
not exist. You will not be able to communicate it, you will forget important details, and you will not be able
to expand your capacity at critical points since you will have no mechanism for others to come up to speed

on the architecture without getting direct access to your head!2

1. This term is chosen to allude to and draw on the CRC (for “class responsibility collaborator”) card body of practice
that was established by Kent Beck and Ward Cunningham.

2. We’re taking first-draft license here!

CONCEPTUAL ARCHITECTURE ACTION GUIDE © 2004 BREDEMEYER CONSULTING 6

Conceptual Architecture Validation: Checking that the Elements
Address the Concerns
The purpose of validation is to provide a forum to demonstrate that the architecture is good (technically
sound) and right (satisfies stakeholders goals and concerns), and also to provide a venue to question and
challenge the architecture. It is important to surface issues with the architecture as early as possible, while
it is still relatively cheap to address these issues (at least, as expensive as it may be now, it will only get
more expensive later). Furthermore, by this process we instill confidence that the architecture is good and
right, putting us on a path to success.

Select Participants. We are all aware that too many dissenting voices can slow progress. At the same
time, real issues need to be brought to light. Selecting the right people to be involved in the architecture
validation exercise is a factor that requires thought. The following questions will help you to identify who
you should involve in validation at this point in the maturation of the architecture:

• What concepts, approaches and decisions are being validated?
• Who has insight into those issues, can assess their goodness and rightness, and make suggestions?
• Who cares about the issues?
• Who needs to be shown how the architecture addresses their concerns?
• Who do you need to support and contribute to the process and the architecture?

Conduct Walk-throughs and Provide Reasoned Arguments. Walk through models of the architecture
showing:

• how the stakeholder goals and concerns that were raised during visioning interviews and architec-
ture requirements gathering are addressed.

• how the Meta-Architecture is reflected in the Conceptual Architecture. For example, illustrating
how it embodies the relevant principles and is consistent with the style/patterns and/or reference
architecture.

• how the architecture addresses concerns and goals raised during the validation process.
The validation process may bring new stakeholders into the discussion, and it may cause stakeholders

who have already been involved to see their own goals or concerns in a new light. Of course we need to
manage requirements changes, especially those that threaten our scoping decisions, but it is foolhardy to
ignore new insights and opportunities to disambiguate requirements at this point.

Keep an Architecture Scorecard. We need to keep track of our progress against the goals set for the
architecture. The architecture scorecard lists all objectives, requirements, and preceding decisions that the
architecture needs to be evaluated against, and records how well we are doing against these objectives and
success criterion. We also record what needs to be changed (requirements, the architecture, or existing
projects impacted by the architecture), and assesses the importance and impact of these changes.

Conceptual Architecture Checklist. We also need to evaluate the architecture against the following crite-
ria:

• Clarity: does each component have a clearly defined responsibility?
• Coupling: are there components with a surprisingly large number of interactions?
• Coverage: has all functionality been assigned to components?

Outcomes and Deliverables
We live in a world where tangibles—like deliverables—are demanded, but intangible outcomes are what
fundamentally matter. Of course, architecture deliverables are essential to important outcomes. But the
point is this: we need to think about what outcomes we want to achieve, so that we can shape expectations
as to what deliverables we should produce. This allows us to focus on deliverables that will actually make
a difference in achieving our desired outcomes.

CONCEPTUAL ARCHITECTURE ACTION GUIDE © 2004 BREDEMEYER CONSULTING 7

Deliverables
As with the Meta-Architecture, and consistent with the IEEE 1471 Standard for Architecture Description,
we need to consider the concerns of our primary stakeholders and tailor views that address specific con-
cerns. We also need to tailor communication formats to match the communication styles and needs of the
stakeholders. In the sections below, we cover deliverables that are generally useful.

Documents
We are often asked to provide a template for “the architecture document.” If one is thinking of only one
document, one must be thinking of the specification document. Indeed, the architecture specification docu-
ment is an important tool, and the Visual Architecting Process provides the overall structure (Meta-Archi-
tecture, Conceptual Architecture, Logical Architecture, Execution Architecture, and Guidelines and
Policies) as well as templates for the models and descriptions that make up each of these sections. But
other documents are critical to reaching the different audiences. We know that market segmentation is
important in product or service development. And we need to think about “selling” the architecture in more
sophisticated terms. This is not to say we spend months on this marketing exercise, but we do need to tailor
our message to the intended audiences or we will not have an audience—except by fiat.

Executive Briefing: Architecture Strategy. The audience for this document is primarily management, up
to the level that is responsible for all systems impacted by the architecture. The briefing covers how we
will deliver on the business and product strategy, producing differentiating capabilities or features. It also
identifies concerns such as tough issues faced on similar past projects, or new risks accompanying new
technical, market or organizational opportunities and directions, and articulates how we will address them.

Technical Briefing: Conceptual Architecture. The audience for this document is primarily the develop-
ment or engineering community, and technical project management. We are so flooded with information in
this “information age,” that many of us shy away from reading in favor of “getting work done,” even when
we recognize that a bit of reading could help us get our work done more effectively. The goal of the techni-
cal briefing is to provide just enough reading to get the system view and essential architectural strategies
across. Make the briefing interesting to the technologist, and brief. Identify the key tough problems the
architecture addresses. Outline your technical approach to addressing these. Refer to white papers for
details on technical approaches.

Architecture Requirements Specification. The specification document is the full reference work con-
taining all requirements models, descriptions, notes, etc. which fully document and explain all decisions
regarding system scope, architecture objectives, priorities, and architecturally significant requirements
including functional requirements and characterizations of required system properties.

Conceptual Architecture Specification. The specification is your complete record of architecture deci-
sions. For a system of reasonable complexity, this document (set) is already quite big, and you need to pro-
vide a means to navigate through it. Organizing this body of work according to the architecture decision
model (meta, conceptual, logical, execution and guidelines and policies) provides for coherent sets of deci-
sions at a consistent level of abstraction. The Conceptual Architecture Specification document, then, col-
lects together all decisions, models, explanations, alternatives considered but rejected and why, and so
forth, relating to the conceptual architecture. It covers how we have organized our system at a conceptual
level:

• what are the components, what are their relationships and externally visible properties?
• what are the key mechanisms, how do they address the architecturally significant cross-cutting

concerns, and how do they interact?

White Papers. The audience is the technical community, and the purpose is to explain and achieve buy-in.
Write white papers motivating and explaining significant (sets of) decisions, such as the conceptual design
of architectural mechanisms or key aspects of the system decomposition. To be effective at persuading the

CONCEPTUAL ARCHITECTURE ACTION GUIDE © 2004 BREDEMEYER CONSULTING 8

technical community, a white paper should clearly identify the problem that is being addressed, describe
the solution and explain how it solves the problem, and outline alternatives that were explored and why
they were not chosen.

Presentations
Documents provide a record and a reference, but presentations are essential to getting the architecture
communicated and “sold.” Use every chance, formal and informal, to present key aspects of the architec-
ture to targeted audiences. And encourage others to do so. The more freely you allow others in your orga-
nization to present “your” architecture ideas, the more exposure those ideas will get. If others take
ownership for those ideas, they are fully bought in to them. It is more helpful to see that as an achievement
than as a threat.

Web Site
Make your architecture web site useful and it will provide its own draw. The great thing about the web is
that it is right where the technical community lives, on their desktop. A well-designed web site serving
content in a way that makes the right information package easily accessible on demand, is invaluable. It is
definitely worth spending cycles architecting the information space covered by your various architecture
documents, presentations, models and so forth. Make it simple to navigate to the right information for each
(important) audience group—even to the level of individuals for those who are, or could be, influential in
making the architecture soar to success.

Outcomes
A key outcome is confidence that “this can be done.” We know where we are headed, and we have confi-
dence we can get there. Specifically, the architect (or team of architects) is confident that there is good
understanding of what capabilities the system needs to have, and these capabilities can be built in the
planned timeframe with the allocated resources. Moreover, the architect has shared this path with manage-
ment and key influencers in the development community, and gained their confidence by showing the
approach that will be taken to build these capabilities, and articulating believable strategies to address the
“gnarly” issues that beset such systems.

Other outcomes include:
• everyone is “on the same page:” there is a shared high-level understanding of the overall system

(components and larger subsystems, their responsibilities and relationships), and the strategies
(expressed as architecture strategies, principles, mechanisms, approaches, etc.) for building the
key system capabilities.

• project management can use the Conceptual Architecture Diagram, and input from the architect(s)
to plan the work allocations and detailed schedule. The project ramp-up varies according to the
organizational complexities and architectural risks, mediated by practicalities like when develop-
ers are coming off other development projects.

Conclusion
As in any phase of the Visual Architecting Process, we collect sufficient requirements to make useful
progress on system structuring and specification, and we validate that the work so far meets stakeholders
goals or concerns. For conceptual architecture in particular, we need to understand enough about the sys-
tem capability requirements to be able to think through and explain our approach to building these capabil-
ities at a conceptual level.

Architects need to play a leading role in determining how the system will contribute to the competitve
advantage of the business and where competitive parity is sufficient. The problems that we will have to
tackle are determined during requirements definition. Architects need to keep one foot firmly planted in

CONCEPTUAL ARCHITECTURE ACTION GUIDE © 2004 BREDEMEYER CONSULTING 9

the business strategy space, as they help sort out and prioritize the architecturally significant requirements.
That is to say, they need to be watchful of opportunities to differentiate yet cautious of risks including
over-ambition and feature explosion. Architects need to be fully involved in establishing these require-
ments and they need to work with management to set priorities.

The conceptual architecture articulates a conceptual view of the system. It is analogous to the elevation
and floor plan views that building architects use for their customers. In that paradigm, the blueprint adds
the detail needed by various specialist contractors to perform their function in building the structure. Like-
wise, logical architecture adds the details that clarify the architecture, making it precise, unambiguous and
actionable.

References
Bredemeyer, Dana and Ruth Malan, “The Role of the Software Architect,” published on the Resources for

Software Architects web site at http://www.bredemeyer.com/papers.htm
Clark and Fujimoto, “Power of Product Integrity”, Harvard Business Review, 1990.
Malan, Ruth, and Dana Bredemeyer, “Less is More with Minimalist Architecture”, IEEE's IT Professional,

September/October 2002.
Malan, Ruth, and Dana Bredemeyer, “Architecture Strategy”, published on the Resources for Software

Architects web site at http://www.bredemeyer.com/ArchitectingProcess/ArchitectureStrategy.htm

Restrictions on Use
This paper and all other material that is published on the Resources for Software Architects web site (http:/
/www.bredemeyer.com), may be downloaded and printed for personal use. If you wish to quote or para-
phrase fragments of our work in another publication or web site, please properly acknowledge us as the
source, with appropriate reference to the article or web page used. If you wish to republish any of our
work, in any medium, you must get written permission from the lead author or the site editor. Also, any
commercial use must be authorized in writing by Bredemeyer Consulting.

Acknowledgments
We would like to thank all the architects that we have worked with over the past decade for freely sharing
their insights and hard-won lessons with us. We are most privileged to be able to pass on their learnings
through our papers and workshops.

CONCEPTUAL ARCHITECTURE ACTION GUIDE © 2004 BREDEMEYER CONSULTING 10

A Note About the Forthcoming Book
We are writing a book for software architects that is short and oriented to guiding action. It has two parts,
with the first part providing context and a guide to the process. The second part is the full set of Action
Guides, one for each discrete technique, model or template that is used in the Visual Architecting Process.
For a preview of our Action Guides, please look at examples under Downloads on the Papers and Down-
loads page of our web site at http://www.bredemeyer.com/papers.htm.

We have other books in mind, but a distilled guide to our Visual Architecting Process is overdue! Up
until now, only our clients have had access to the full Visual Architecting Process, largely through our
training materials. This is because our writing projects have necessarily lagged behind the creation of prod-
ucts that keep Bredemeyer Consulting in business.

Brevity is a driving goal for this book. It has caused us to make choices, like pulling details on tech-
niques and models out of the process overview and placing them in pithy “action guides”, one per tech-
nique, model or template. This means that if you are not familiar with a technique or model that we make
reference to, you will have to wait with baited breathe for the related Action Guide to appear.

Joking aside, we look forward to your feedback, but please take into account that you don’t have all the
pieces yet. We have chosen to put chapter drafts “out there” as quickly as possible so that you can have
access to more information on the Visual Architecting approach, and we can have the benefit any input you
are kind enough to take the time to give us.

Please join our mailing list to receive notice of new chapters and Action Guides as they are added to
the site. To do so, complete the form on our web site at http://www.bredemeyer.com/Forms/subscrib.htm,
or click the envelope icon in the sidebar of most pages on our web site.

Table of Contents

Part I: Software Architecture and the Visual Architecting Process
Chapter 1. Software Architecture: Central Concerns, Key Decisions
Chapter 2. The Visual Architecting Process: Good, Right and Successful
Chapter 3. Initiate and Gain Commitment: Getting Started
Chapter 4. Meta-Architecture: Getting Strategic
Chapter 5. Conceptual Architecture: Getting the Big Chunks Right
Chapter 6. Logical Architecture: Getting Precise, Making Actionable
Chapter 7. Execution Architecture: Getting Physical
Chapter 8. Architecture Guidelines and Policies: Getting Specific
Chapter 9. Architecture Deployment: Getting Real

Part II: Software Architecture Action Guides
Here are some examples of what we call Action Guides:

• Software Architecture Principles Template (http://www.bredemeyer.com/pdf_files/
Principles_Template.PDF, 24kb)

• Stakeholder Profile Action Guide (http://www.bredemeyer.com/pdf_files/
Stakeholder_Profile.PDF, 222kb)

• Use Case Template (http://www.bredemeyer.com/pdf_files/UseCase_Template.PDF, 25kb)
• Interface Specification Template (http://www.bredemeyer.com/pdf_files/Interface_Template.PDF,

24kb)

CONCEPTUAL ARCHITECTURE ACTION GUIDE © 2004 BREDEMEYER CONSULTING 11

Resources
Software Architecture Workshop. This class focuses on the Visual Architecting Process (VAP). It is
organized around the process. As the workshop progresses, small teams of participants take their project
from vision to architecture. This format, punctuating lectures with exercises that build on one another,
gives participants the opportunity to learn and practice techniques used in each of the process steps.

Open Enrollment Classes:
London, UK on June 20-23, 2005
Indianapolis, IN on September 26-29, 2005
See http://www.bredemeyer.com/architecture_workshop_overview.htm

Enterprise Architecture Workshop. This class focuses on the Visual Architecting Process for the Enter-
prise (VAP-Enterprise). Following a couple of context-setting modules, the core sections of the course are
organized around the process. It follows a workshop format, with lecture modules followed by team exer-
cises to practice techniques and solidify concepts and models. The Visual Architecting Process for the
Enterprise starts with Business Strategy, identifies and refines the Business Capabilities Architecture, and
uses this to drive the Information (data), Application Solution, and Technology (Infrastructure) Architec-
tures at the enterprise level of scope.

Open Enrollment Classes:
London, UK on June 20-23, 2005
Houston, TX on October 18-21, 2005
See http://www.bredemeyer.com/Enterprise Architecture/Enterprise_Architecture_Workshop.htm

Software Architecture Overview Seminar: This course goes over the basics (what, why, how, who,
when, and where) and is a good introduction for managers and developers, business analysts and others
who need to partner with architects in making architecture successful. This class will build insight into the
importance of architecture, as well as the role of architects and others in making architecture successful.

See http://www.bredemeyer.com/Workshops/Descriptions/architectureConceptsWorkshop.htm

Role of the Architect Workshop. Excellent class for architects—according to those who have taken it,
that is. This class helps you identify what skills you need to strengthen, and starts you along the road to
building them, while providing options for what to do next to further develop needed skills.

Open Enrollment Class: Indianapolis, IN on May 24-26, 2005
See http://www.bredemeyer.com/role_of_architect_workshop_overview.htm

© 2004 BREDEMEYER CONSULTING WHITE PAPER 4/20/05 12

BREDEMEYER CONSULTING
Bloomington, IN 47401
Tel: 1-812-335-1653
http://www.bredemeyer.com

About Bredemeyer Consulting
Bredemeyer Consulting provides a range of consulting and training
services focused on Enterprise, System and Software Architecture.
We provide training and mentoring for architects, and typically work
with architecture teams, helping to accelerate their creation or renova-
tion of an architecture. We also work with strategic management, pro-
viding consulting focused on developing architectural strategy and
organizational competency in architecture.

We manage the Resources for Software Architects web site
(see http://www.bredemeyer.com). This highly acclaimed site orga-
nizes a variety of resources that will help you in your role as architect
or architecture program manager. A number of Bredemeyer Consult-
ing’s Action Guides, presentations and white papers are on the Papers
and Downloads page (http://www.bredemeyer.com/papers.htm). You
may also be interested in our Software Architecture and Enterprise
Architecture Workshops, as well as our Architectural Leadership
class. For more information, please see http://www.bredemeyer.com/
training.htm.

