
Copyright © 2004 by Bredemeyer Consulting

Architecture Software architecture is the high-level structure of a software system, comprising software
components and the relationships among them. A good architectural description includes var-
ious views of the architecture, principles directing component design and evolution, and doc-
umentation of assumptions and rationale behind architectural choices linked to functional
requirements and system qualities.

Architecting The software architecting process involves the following steps:

1. Init/Commit: Gain management sponsorship
and form the architecture team

2. Requirements: Establish and document the
architectural requirements

3. Structuring: Define the architecture
4. Validation: Validate that the architecture

meets the requirements
5. Deployment: Deploy the architecture to the

developer community

The architectural requirements, system structur-
ing, and architecture validation steps are best
conducted iteratively, as shown in the diagram.
The process steps are described below. Also,
see our Resources for Software Architects web
site (http://www.bredemeyer.com) for more.

Init/Commit Gain management sponsorship and form the architecture team
• Create an architecture vision showing how the architecture contributes to long-term busi-

ness success to help align the architecture team and gain management sponsorship.
• Develop a communication plan. Identify the architecture stakeholders and their communi-

cation needs. Plan the activities that will produce the information, and the formats and
timeframes in which to communicate the information.

Requirements Establish and document the architectural requirements
• Establish which business objectives apply to the system to ensure that the architecture is

aligned with the business agenda.
• Understand the system context. Determine the system boundary--what is in scope and what

is out of scope. Understand the key organizational, business, competitive, and technical
drivers affecting the architecture.

• State the system value proposition, establishing how the system will fit the users’ agenda
and top-level, high-priority goals.

• Document functional requirements by translating user goals into a set of use cases.
• Document the system qualities or non-functional requirements (e.g., performance and

security) by associating them with use cases or creating “what-if” scenarios.

Structuring Define the architecture
• Based on studying other architectures, and past experience, formulate the architectural

style, concepts, principles and mechanisms that will guide the architecture team during the
next steps of structuring.

• Decompose the system into components. Identify the responsibilities of each component
and interconnections between components.

• Model the dynamic behavior of the system, using UML collaboration diagrams to think
through and refine the responsibilities and interfaces of the components.

• Create component specifications. Each should include a summary description of services
the component provides, the component owner’s name, IID and version names, message
signatures (IDL), a description of the operations, constraints or pre-post conditions for
each operation (these may be represented in a state diagram), the concurrency model, con-
straints on component composition, a lifecycle model, how the component is instantiated,
how it is named, a typical use scenario, a programming example, exceptions, and a test or
performance suite.

• Map the components onto the processes of the physical system. Evaluate alternative solu-
tions against requirements such as performance and scaling.

Validation Validate that the architecture meets the requirements
• Conduct architecture assessments. These involve modeling and walking-through scenarios

that exemplify requirements, as well as assessment by experts who look for gaps and
weaknesses in the architecture based on their experience.

• Develop prototypes or proofs-of-concept. Take a skeletal version of the architecture all the
way through to implementation to prove out critical aspects of the architecture.

Deployment Deploy the architecture to the developer community
• Help the developer community understand the architecture and its rationale through con-

sulting, tutorials, demos and ongoing involvement in solving complex system problems.
• Actively watch for and respond to the need for changes to the architecture. Stay engaged!
• Ensure that the designs and implementations adhere to the architecture by being involved

in design reviews.

Architects Architects create and maintain software architectures. Technical responsibilities include:
developing an architectural vision; experimenting with alternative architectural approaches;
creating models and component specification documents; and validating the architecture
against requirements and assumptions. Non-technical activities include envisioning the right
architectural approach to the customers problem set given the business objectives of the
architect’s organization; actively selling the architecture to its various stakeholders; and con-
sulting to and training the developer organization in the use of the architecture.

Training Bredemeyer Consulting specializes in architecture competency development. We typically
work with architecture teams, providing training and mentoring to accelerate the creation or
migration of an architecture. We offer a limited number of Software Architecture
Workshops for open enrollment. The next open enrollment workshops are in:

• Palo Alto: March 21-24, 2005

• London, UK: June 6-9, 2005

We are also running our Role of the Architect Workshop in Indianapolis on May 11-13,
2005. For further information, please call us at (812) 335-1653 or visit
http://www.bredemeyer.com/training.htm.

