
4/28/05

Ar
ch

ite
ct

ur
e Architecting

Architects

BREDEMEYER CONSULTING, Tel: (812) 335-1653

ARCHITECTURE RESOURCES
For Enterprise Advantage

http://www.bredemeyer.comhttp://www.bredemeyer.com

Software Architecture: Central Concerns,
Key Decisions
If the applications software supporting your services and essential
business systems, or the software in your products, is becoming bigger
and messier, it is time to consider whether software architecture ought
to be a core competency of your business. So, it is fair to ask “what is
software architecture?”

This paper seeks to answer that question, not in terms of a simple
definition, but by helping us understand the full nature of software
architecture. First, we explore the concerns that are uniquely, or most
appropriately, addressed by software architecture. Next, we consider
the decisions and descriptions that characterize and formulate an
architecture. We present our layered model of software architecture,
which both organizes architectural decision making and architecture
description. Finally, we consider how to communicate the architecture.

With this fundamental understanding of what software architecture
is, architects can turn to the question of how to create architectures
that are good, right and successful, and managers can consider how to
hire and develop great architects.

by Ruth Malan and Dana Bredemeyer
Bredemeyer Consulting
ruth_malan@bredemeyer.com
dana@bredemeyer.com

From “Chapter 1. Software Architecture: Central Concerns, Key Decisions”. The book
is titled Software Architecture Action Guide, by Ruth Malan and Dana Bredemeyer.

2 © 2002 BREDEMEYER CONSULTING http://www.bredemeyer.com

Introduction
Software may not be the first thing your customers associate with your products or services, but it is, visi-
bly or not, impacting your ability to impress and keep customers. Whether yours is a manufacturing com-
pany producing products with software content, or a services company using applications to support your
service offerings, your reliance on software to create competitive differentiation has increased dramatically
over the past few decades. While the signature competencies of your industry may be the obvious place to
focus strategic attention, software architecture has emerged as a competency that a broad variety of busi-
nesses, including traditional software companies, have to develop, and do so quickly. Such is the pace of
our times that while we are sorting out what software architecture is, we are trying to raise it to the level of
business competency!

In this paper, we aim to help you understand what constitutes software architecture, and how best to
express it. We consider what key concerns it addresses—what are the distinguishing concerns that, if not
dealt with by software architecture, would be seriously debilitating for the project or system being built?
We then consider the nature of decisions that characterize architecture. Next, we make the notion of soft-
ware architecture actionable, by describing the different views that help architects address the key concerns
of their architecture. Finally, we consider what it takes to communicate an architecture to different stake-
holder groups, and deliver on the promises of architecture.

Central Concerns Addressed by Software Architecture
Over the past few decades, the complexity of software systems has increased substantially. If we consider
only the complexity inherent in managing something that takes hundreds and even thousands of person-
years to develop, then many of the software systems around today have complexity comparable to that of a
skyscraper. As Kruchten (Bosch, 2000) and Booch et al (1999) observe, we cannot use the same ad hoc
approach to build skyscrapers that we use to build dog-houses. A decade ago, Garlan noted that

“as the size and complexity of software systems increases, the design problem goes beyond the algo-
rithms and data structures of the computation: designing and specifying the overall system structure
emerges as a new kind of problem... This is the software architecture level of design.” (Garlan, 1992)

Clearly then, complexity is a key concern that we would like software architecture to address. This
complexity presents itself in two primary guises:

• intellectual intractability. The complexity is inherent in the system being built, and may arise from
broad scope or sheer size, novelty, dependencies, technologies employed, etc. Software architec-
ture should make the system more understandable and intellectually manageable—by providing
abstractions that hide unnecessary detail, providing unifying and simplifying concepts, decompos-
ing the system, etc.

• management intractability. The complexity lies in the organization and processes employed in
building the system, and may arise from the size of the project (number of people involved in all
aspects of building the system), dependencies in the project, use of outsourcing, geographically
distributed teams, etc. Software architecture should make the development of the system easier to
manage—by enhancing communication, providing better work partitioning with decreased and/or
more manageable dependencies, etc.

Given that we need to decompose the system to address complexity, what new problems emerge that
have to be dealt with by the architecture?

• How do we break this down into pieces? A good decomposition satisfies the principle of loose
coupling between components (or pieces), facilitated by clean interfaces, simplifying the problem
by dividing it into reasonably independent pieces that can be tackled separately.

• Do we have all the necessary pieces? The structure must support the functionality or services
required of the system. Thus, the dynamic behavior of the system must be taken into account when

 SOFTWARE ARCHITECTURE © 2002 BREDEMEYER CONSULTING 3

designing the architecture. We must also have the necessary infrastructure to support these ser-
vices.

• Do the pieces fit together? This is a matter of interface and relationships between the pieces. But
good fit—that is fit that maintains system integrity—also has to do with whether the system, when

composed of the pieces, has the right properties1.
We refer to broad-scoped qualities or properties of the system as cross-cutting concerns, because their

impact is diffuse or systemic. It may be a matter of preferring not to isolate these concerns because the
decomposition is being driven by other concerns, or it may be that no matter how you might “slice-and-
dice” the system, multiple parts are going to have to collaborate to address these cross-cutting concerns. At
any rate, to effectively address cross-cutting concerns, they must be approached first at a more broad-
scoped level. Many system qualities (also known as non-functional requirements or service-level agree-
ments) are of this nature. They include performance, security and interoperability requirements. To make
the picture more complicated, the system qualities may conflict, so that trade-offs have to be made among
alternative solutions, taking into account the relative priorities of the system qualities.

Another concern that is key to architecture is whether the solution is congruent with the environment.
This is not just a matter of interface and relationships with external systems, but of consistency and har-
mony with them. It is also a matter of being congruent with the strategy of the business and the purpose of
users.

Not only should the architecture fit in the context of legacy systems, enhancing not destroying the
value of past investments, but it should stylize what has been proven to work well and avoid repeating
what does not. In addition to integrating lessons learned, it should identify and exploit opportunities for
reuse within the system, and across systems. Further, it should anticipate the future, taking into account
trends and likely (and even unlikely) future scenarios.

As software systems have been growing in complexity, the industry has been learning valuable lessons
about building complex systems. Some individuals have acquired more proficiency, through experience
and a fairly unique set of skills (Bredemeyer and Malan, 2002), at solving complex-system problems.
Organizations rightly want to build competitive strength by magnifying the skills of the uniquely talented
and experienced few at the apex of the organization’s system-design prowess. These are becoming broadly
known as architects, and their responsibility is to make architectural decisions that will manifest as the
architecture of the software system.

Architectural Decisions
A distinctive characteristic of architectural decisions is that they need to be made from a broad-scoped or
system perspective. Any decision that could be made from a more narrowly-scoped, local perspective, is
not architectural (at the current level of system scope). This allows us to distinguish between detailed
design and implementation decisions on the one hand, and architectural decisions on the other—the former
have local impact, and the latter have systemic impact. That is, architectural decisions impact, if not all of
the system, at least different parts of the system, and a broad-scoped perspective is required to take this
impact into account, and to make the necessary trade-offs across the system.

1. In seminars, Russell Ackoff puts this challenge to his audience (we have paraphrased, based on memory): Collect
together a team of the best automotive design engineers in the world. Assign them the task of selecting the best car
component of each type. Will they be able to create the world’s best car from these components? No, of course not!

Even in a field like automobiles that is mature enough that there is a “dominant design” identifying the essential
components of the system, these components are not simply interchangeable. Even if they could plug together, they
are designed with different quality specifications (individually, they have different “externally visible properties” or
guarantees). Typically, they are designed in conjunction with other associated components to deliver some more sys-
temic property.

4 © 2002 BREDEMEYER CONSULTING http://www.bredemeyer.com

For example, if the system under consideration is an individual application, any decisions that could be
made by component designers or implementers should be deferred to them and not appear as part of the
architecture. If the scope of the architecture is a family of applications (or product line), then any decision
that relates only to a single application (or product) should be deferred at least to the application architec-
ture and not be part of the application family architecture.

However, a decision may have systemic impact but not be very important, in which case it is also not
architectural. By nature, architectural decisions should focus on high impact, high priority areas that are in
strong alignment with the business strategy, as shown in Figure 1.

Based on our discussion of key concerns addressed by software architecture, we see that, at a mini-
mum, architectural decisions have to do with

• system priority setting
• system decomposition and composition
• system properties, especially cross-cutting concerns
• system fit to context
• system integrity

Let us consider each of these in turn, though they are certainly not mutually exclusive sets of decisions!

System Priority Setting
In the design of any complex system, one has to pick where to excel, and where to make the myriad com-
promises necessary to get the system built. It is essential to make priorities explicit so that attention can be
focused on high-priority areas, and so that trade-offs between conflicting concerns can be made rationally,
and decisions can be justified in terms of agreed priorities. Architects need to lead the priority-setting pro-
cess for technical aspects of the system. This is a highly strategic process, and has to be informed by:

• the business, including business strategy and direction, core competencies and resources, and poli-
tics

• the market including customers, competitors, suppliers and channel
• technology including trends and opportunities
• constraints including existing technology investments and legacy systems
• challenges and impediments to the success of the system, the development of the system, and the

business.

Decomposition and Composition
Fundamental to software architecture is the structure of the system in terms of the primary structural ele-
ments or components of the system, and their interrelationships. Associated architectural decisions seek to
address such concerns as complexity (applying the principles of “separation of concerns” and “divide and

Low Impact High Impact
(high priority, important to business)

Systemic
(broad scope)

not architectural (this could be
a trap)

focus of architectural
decisions

Local not architectural

not generally architectural
(though might set architecture
guidelines and policies as
needed)

Figure 1: Decision Scope and Impact

 SOFTWARE ARCHITECTURE © 2002 BREDEMEYER CONSULTING 5

conquer”) and portability and flexibility (applying the principle of localizing areas that are likely to change
together). While isolating particular concerns, the architect (or architecture team) has to ensure that the
functionality or services of the system can be delivered by the components working in collaboration. That
is, the system responsibilities (services and associated service level) have to be assigned to the compo-
nents. This has to be done from a system perspective, so that consistent assumptions are made about each
component’s responsibilities. Further, the responsibilities and associated assumptions must be documented
to provide the proper context for designing and developing each component relatively independently, on
the one hand, and for using components without knowledge of the internals, on the other. These are the
externally visible properties of the component (a la Bass et al., 1997; see definitions in the Appendix).

System Properties and Cross-Cutting Concerns
System decomposition isolates some particular concerns so that they can be addressed independently. Dif-
ferent partitioning choices tend to isolate different (sets of) concerns. The remaining concerns are, by
nature, cross-cutting—they impact various parts of the system.

At a minimum, sets of collaborating components have to be considered together, to properly address
each cross-cutting concern. For example, performance typically has to be considered in terms of the pat-
terns of interaction that the architectural structure allows, and is not just a matter of optimizing the perfor-
mance of the parts separately.

Sometimes a cross-cutting concern, like interoperability, warrants specific architectural attention, and
a mechanism is designed to address it. The mechanism may be designed as a set of collaborating compo-
nents, and in particular, specific roles of those components, focused on addressing the cross-cutting con-
cern. The result may, for example, be to place an interface on a component that does not fit with its core

cohesive set of responsibilities.1

System Fit to Context
Just as a building architect cannot overlook such contextual factors as the building site, hook-up to city ser-
vices like sewer and utilities, and the competencies and resources in local supply, the software architect
cannot overlook the context of the system. The key technical considerations alluded to by “system fit to
context” have to do with interoperability, consistency and interface with external systems. However, fit
within the development organization’s culture and capabilities, are also considerations to be factored into
architectural decisions and choices.

System Integrity
System integrity means having, or being conceived of as having, a unified overall design, form, or struc-
ture. It has to do with congruence of the pieces in the large, as well as in the small. We see this in building
architecture, where architectural integrity has a fair amount to do with gross structural forms (levels, roof
line, space layout), but also has to do with other details—even fine details like the size and style of win-
dows and other architectural trim. You can see this in the extreme in the case of Frank Lloyd Wright, who
even designed furniture for some of the homes he architected. From the building architecture analogy, we

1. One example is the IUnknown interface on every component in COM systems, that is part of the mechanism for
allowing components to be dynamically interchanged. Quite a number of mechanisms of this nature have been for-
malized and commercialized as middleware, given the pervasive nature of the architectural problem they address.
Another example is JetSend, which provides appliance interconnection mechanisms, and CCOW, which provides
context consistency across medical applications (the Common Clinical Context (CCOW) Architecture Specification
is available from HL7 at http://www.hl7.org). Many such mechanisms start out life as a differentiator, solving some
pervasive problem or creating an innovative opportunity for a particular business. They may be applied within a
product or across a product family or set of applications. In the latter case, they are often treated as part of the infra-
structure (variously known as framework or platform) for the product family.

6 © 2002 BREDEMEYER CONSULTING http://www.bredemeyer.com

also see that architectural integrity has both to do with structural integrity and aesthetic notions of fit. Fur-
ther, fit includes internal balance, compatibility and harmony among the parts, as well as fit to context and
to purpose.

This has two immediate implications. Firstly, as architects are designing the high-level structures of
the system, they need to create a sense of what system integrity is for that system, and they need to ensure
that the architectural components, with their properties and relationships, accede to, and form a foundation
for, this integrity. We see a key role to be played here by vision, architectural style, principles, and concepts
chosen to provide a consistent approach from high-level structuring to detailed design.

Secondly, some decisions may have nothing to do with the high-level structures of the system, but if
they have to do with the integrity of the architecture then they may be considered architectural. System
integrity then, opens the door for architects to make decisions that might otherwise be considered the char-
ter of component designers and implementers. However, we strongly encourage minimalist architecture,
by which we mean keeping the architecture decision set as small as possible.

Minimalist Architecture
The only justifiable reason for restricting the intellectual freedom of designers and implementers is demon-
strable contribution to strategic goals and systemic properties that otherwise could not be achieved (Malan
and Bredemeyer, 2002 b). Architects are highly valuable, essential technical assets of any company, and
their attention should not be squandered on decisions that are not, truly, architectural. Similarly, designers
and implementers are also part of the critical capacity to produce innovation and value, and their ability to
do this should not be unnecessarily restricted but rather channeled appropriately to fulfill the architectural
vision and the business strategy it implements.

Three principles can be applied to achieve a minimalist architecture. The first has already been men-
tioned: if a decision could be made at a more narrow scope, defer it to the person or team who is responsi-
ble for that scope.

Second, only address architectural decisions at high-priority architecturally significant requirements.
Architecturally significant requirements include strategic objectives, important distinct services the system
must offer, and qualities or properties of the system that are systemic or have broad impact across (parts of)
the system (Malan and Bredemeyer, 2002 a).

Third, as decisions are added to the architecture, they should be evaluated from the point of view of
their impact on the overall ability of the organization to adopt the architecture. A decision may address a
highly critical concern, but if it would cause the architecture effort to be derailed, it should be put aside, at
least for now.

As part of the minimalist architecture discipline, each architectural decision should have a well-rea-
soned and documented rationale. Architectural decisions optimize at a broader scope, but may be subopti-
mal at a more local scope. The rationale should enable those with local visibility to understand the impact
on the overall system of any locally optimized, but globally suboptimal, deviations from the architectural
decision. On the other hand, providing rationale allows for “checks and balances” on the architecture, in
that decisions that would substantially better achieve the architecturally significant requirements, without
compromising higher-priority architectural requirements, can reasonably be brought up in contention with
the architectural decisions.

Architecture Decision Framework
From the above discussion, we see that architectural decisions may be at different levels of abstraction. To
be sure, the primary focus is on the architecture—the structural elements of the system together with their
externally visible properties and relationships. However, there are higher-level decisions that guide and

 SOFTWARE ARCHITECTURE © 2002 BREDEMEYER CONSULTING 7

constrain the system decomposition and structuring decisions (meta-architecture), and there may be lower-
level decisions that guide and constrain the next level(s) of design and implementation (architecture guide-
lines and policies). This is captured in the layered model of software architecture shown in Figure 2.

We have found that this model provides a highly effective separation of concerns, helping architects to
organize their decision-making process and providing focus for action. Indeed, our Visual Architecting
Process (Malan and Bredemeyer, 2002) is organized around this model.

At the same time, the model organizes the architecture description, which consists of models, descrip-
tions, explanations, etc., that capture the architectural decisions and help different stakeholders visualize
the architecture and see how their concerns are addressed by it. The architectural description (ideally, at
any rate) guides the creation of the system, and it is what we return to when we want to evolve the system.

Meta-Architecture
The meta-architecture is a set of high-level decisions that will strongly influence the integrity and structure
of the system, but is not itself the structure of the system. The meta-architecture, through style, patterns of

composition or interaction1, principles, and philosophy, rules certain structural choices out, and guides
selection decisions and trade-offs among others. By choosing communication or co-ordination mecha-
nisms that are repeatedly applied across the architecture, a consistent approach is ensured and this simpli-

fies the architecture. It is also very useful at this stage, to find a metaphor or organizing concept2 that
works for your system. It will help you think about the qualities that the system should have, it may even
help you think about what components you need (in Conceptual Architecture), and it will certainly help
you make the architecture more vivid and understandable.

Figure 2: Software Architecture Decision Framework

1. For example, layered architecture or dataflow style. See Shaw and Garlan (1996), Buschmann et al. (1996) and
Schmidt et al. (2000) for excellent work on architectural styles and architectural patterns.

2. In the highly recommended Harvard Business Review classic, “The Power of Product Integrity” by Clark and Fujim-
oto, the powerful system concept “Honda for the rugby player in a business suit” helped the Honda design team
think about what kind of system to build, and influenced the team through all the myriad decisions and trade-offs
that had to be made as the architecture and design progressed.

Meta-Architecture

Architecture

Architecture Guidelines and Policies

Conceptual Architecture

Logical Architecture

Execution Architecture

• Architectural vision, principles, styles, key concepts and mechanisms
• Focus: high-level decisions that will strongly influence the structure of

the system; rules certain structural choices out, and guides selection
decisions and tradeoffs among others

• Structures and relationships, static and dynamic views,
assumptions and rationale

• Focus: decomposition and allocation of responsibility,
interface design, assignment to processes and threads

• Use model and guidelines; policies, mechanisms and design patterns;
frameworks, infrastructure and standards

• Focus: guide engineers in creating designs that maintain the integrity of
the architecture

guide
designers

guide
architects

Meta-Architecture

Architecture

Architecture Guidelines and Policies

Conceptual Architecture

Logical Architecture

Execution Architecture

Conceptual Architecture

Logical Architecture

Execution Architecture

• Architectural vision, principles, styles, key concepts and mechanisms
• Focus: high-level decisions that will strongly influence the structure of

the system; rules certain structural choices out, and guides selection
decisions and tradeoffs among others

• Structures and relationships, static and dynamic views,
assumptions and rationale

• Focus: decomposition and allocation of responsibility,
interface design, assignment to processes and threads

• Use model and guidelines; policies, mechanisms and design patterns;
frameworks, infrastructure and standards

• Focus: guide engineers in creating designs that maintain the integrity of
the architecture

guide
designers

guide
designers

guide
architects

guide
architects

8 © 2002 BREDEMEYER CONSULTING http://www.bredemeyer.com

Architecture
Architecture is at the center of our layered decision model (Figure 2), and at the center of the architecting
activity. It is where the system structures are created, taking into account system priorities and constraints,
and ensuring that the system will achieve the system objectives and architectural requirements. This work
is informed and constrained by the decisions made in the Meta-Architecture.

Within the architecture layer, we use different views to enhance the understandability of the architec-
ture and to focus on particular concerns separately. We distinguish between Conceptual, Logical and Exe-
cution views, as shown in Figure 3 and described below.

Conceptual Architecture
The Conceptual Architecture identifies the high-level components of the system, and the relationships
among them. Its purpose is to direct attention at an appropriate decomposition of the system without delv-
ing into details. Moreover, it provides a useful vehicle for communicating the architecture to non-technical
audiences, such as management, marketing, and users. It consists of the Architecture Diagram (without
interface detail) and an informal component specification for each component.

Logical Architecture
In Logical Architecture, the externally visible properties of the components are made precise and unambig-
uous through well-defined interfaces and component specifications, and key architectural mechanisms are
detailed. The Logical Architecture provides a detailed “blueprint” from which component developers and
component users can work in relative independence. It incorporates the detailed Architecture Diagram
(with interfaces), Component and Interface Specifications, and Component Collaboration Diagrams, along
with discussion and explanations of mechanisms, rationale, etc.

Execution Architecture
An Execution Architecture is created for distributed or concurrent systems. The process view shows the
mapping of components onto the processes of the physical system, with attention being focused on such
concerns as throughput and scalability. The deployment view shows the mapping of (physical) components
in the executing system onto the nodes of the physical system.

Figure 3: Architecture Views

Conceptual Architecture

Logical Architecture

Execution Architecture

• Architecture Diagram, CRC-R cards
• Focus: identification of components and allocation of responsibilities to

components

• Updated Architecture Diagram (showing interfaces), Interface specifications,
Component specifications and usage guides

• Focus: design of component interactions, connection mechanisms and
protocols; interface design and specification; providing contextual information
for component users

• Process View (shown on Collaboration Diagrams)
• Focus: assignment of the runtime component instances to processes,

threads and address spaces; how they communicate and coordinate; how
physical resources are allocated to them

Conceptual Architecture

Logical Architecture

Execution Architecture

• Architecture Diagram, CRC-R cards
• Focus: identification of components and allocation of responsibilities to

components

• Updated Architecture Diagram (showing interfaces), Interface specifications,
Component specifications and usage guides

• Focus: design of component interactions, connection mechanisms and
protocols; interface design and specification; providing contextual information
for component users

• Process View (shown on Collaboration Diagrams)
• Focus: assignment of the runtime component instances to processes,

threads and address spaces; how they communicate and coordinate; how
physical resources are allocated to them

 SOFTWARE ARCHITECTURE © 2002 BREDEMEYER CONSULTING 9

Architectural Views and Structure and Behavior
Both structural and behavioral views are important to thinking through and representing architecture:

• Structural View. If we accept that “architecture is the high-level structure of the system comprised
of components, their interrelationships, and externally visible properties” (adaptation of the Bass,
Clements, Kazman definition), the structural view is central. It consists of the Architecture Dia-
gram (stereotyped UML Class Diagram), and Component and Interface Specifications.

• Behavioral View. In decomposing the system into components and designing their interfaces, and
in designing mechanisms to address key cross-cutting concerns, we have to answer the question
“How does this work?” Likewise, in understanding and using the architecture, we have to be able
to answer the same question. This is the role of the behavioral view, with its Component Collabo-
ration or Sequence Diagrams (stereotyped UML Sequence and Collaboration Diagrams).

Structural and behavioral views are applicable for each of the Conceptual, Logical and Execution Archi-
tecture views (or layers), as shown in Figure 4.

In general, however, you would want to at least have:
• an Architecture Diagram and informal component descriptions for Conceptual Architecture,
• Interface Specifications, Component Specifications and an updated (Logical) Architecture Dia-

gram showing interfaces and relationships for Logical Architecture. You should also include Col-
laborations Diagrams for key Use Case steps. Note that these may be used to describe system
behavior (they are simply illustrative), or to prescribe how system behavior is to be accomplished,
and you should be clear about which of these you intend. In general, you should avoid being pre-
scriptive unless you have a strong architectural reason for curtailing the creative options open to
designers and developers.

Architectural Guidelines and Policies
To help maintain system integrity or to address cross-cutting concerns, architects may include decisions
focused at guiding or constraining lower-level design or even implementation in the architecture decision
set. Recall our caution: the only justifiable reason for restricting the intellectual freedom of designers and
implementers is demonstrable contribution to strategic and systemic properties that otherwise could not be
achieved. That said, there is a fair amount that architects can valuably do to help designers and implement-

Figure 4: Architecture Views with Structure and Behavior

10 © 2002 BREDEMEYER CONSULTING http://www.bredemeyer.com

ers in applying the architecture and in paying attention to the right characteristics of the problem so that
their decisions, in turn, are in alignment with all that is explicit in the architecture and all that is implicit in
the architecture concept.

Communicating Architectural Decisions
The architectural decisions are impotent unless remembered, bought-into and understood. The primary
goals of architecture documentation are to:

• Record the architects' decisions. To meet this goal, the documentation must be complete and
unambiguous.

• Communicate the architecture. To meet this goal, you must consider what each of your stakehold-
ers needs to know, and how best to convey what they need to know. The comprehensive architec-
ture specification document (set) that addresses the first goal is, realistically, probably going to
become shelfware and will not serve the goal of communication!

Let us consider what needs to be recorded and communicated.

Architecture Drivers
Though not part of the architecture as such, the drivers that shape the architecture are important to make
explicit and sharable. They include:

• Architecture Vision, expressing the desired state that the architecture will bring about.
• Architectural Requirements, capturing stakeholder goals and architecturally significant behavioral

(functional) requirements as well as system qualities (non-functional requirements) and con-
straints.

• Assumptions, Forces and Trends, documenting assertions about the current business, market and
technical environment now and over the architecture planning horizon.

Architecture Views
In our Software Architecture Decision Framework (Figures 2 and 3), we presented a set of standardized
views. These are what we have found to be useful in guiding architects as they make architectural deci-
sions—that is, they provide useful thinking tools for considering decisions and choosing among alterna-
tives. They also become the foundation for the architecture specification, by which we mean the complete
set of architecture decisions at the chosen level(s) of abstraction, specificity and precision.

Architecture Documentation
With the architecture drivers and various architecture views, you have the raw material from which to com-
pose documents and presentations targeted at different audiences (“viewpoints,” in the parlance of
IEEE1471). At a minimum, your document set should include:

• Reference Specification. The full set of architecture drivers, views, and supplements such as the
architecture decision matrix and issues list, provides your reference specification.

• Management Overview. For management, you would want to create a high-level overview, includ-
ing vision, business drivers, Architecture Diagram (Conceptual) and rationale linking business
strategy to technical strategy.

• Component Documents. For each component owner, you would ideally want to provide a system-
level view (Logical Architecture Diagram), the Component Specification for the component and
Interface Specifications for all of its provided interfaces, as well as the Collaboration Diagrams
that feature the component in question.

 SOFTWARE ARCHITECTURE © 2002 BREDEMEYER CONSULTING 11

Other Communication Vehicles
Communication cannot be restricted to documents, no matter how carefully targeted. To be applied, the
architecture must be understood. To be supported, it must be bought-into. Architects and their sponsors
need to do presentations of various sorts to various audiences, from strategic to project management, to
designers, implementers and testers, and to marketing and customers. It also helps to create tutorials and
workshops on the architecture, showing how to apply it in developing applications or products. Further,
architects need to generally rove about, addressing questions and concerns as they arise. We strongly
encourage architecture teams to create a communication plan early, and identify what information is
needed and what needs to be provided to whom, and in what format. This builds the necessary time for cre-
ating communication vehicles to produce alignment and understanding into the architecture project plan.

Conclusion
We have considered what software architecture addresses, and how you express software architecture. But
all the documentation and presentations in the world will not suffice, unless the software architecture is:

• good—it is technically sound and clearly represented
• right—it meets the needs and objectives of key stakeholders, and
• successful—it is actually used in developing systems that deliver strategic advantage.

Of course, how one creates an architecture that is all of these things is beyond the scope of this conclu-
sion! Our Visual Architecting Process (VAP) is, however, the focus of a companion paper (Malan and
Bredemeyer, 2002 c). This process covers the techniques, including architectural modeling and architec-
ture validation, used in creating a technically sound architecture. It covers architectural requirements and
driving trade-offs to create the right architecture, and it covers the organizational process steps that help
ensure that the architecture is embraced and used informedly so that, ultimately, the architecture is success-
ful.

Much of what it takes to ensure that an architecture is successful, relies on the non-technical skills of
the architect(s). These include organizational politics and leadership. Our paper on the Role of the Archi-
tect (Bredemeyer and Malan, 2002) will help you to identify the characteristics and competencies of archi-
tects capable of translating from business strategy to an effective technical implementation of that strategy
through an architecture that is good, right and successful.

Acknowledgments
We would like to thank our colleague, David Redmond-Pyle, for motivating us to greatly improve this
paper, and for his very helpful suggestions for specific improvements to it. We cannot overlook the stimu-
lating conversations we have had on architecture with our other associates at Bredemeyer Consulting, in
particular Aaron Lafrenze and Raj Krishnan.

Also, we thank the community of architects who continue to be our source of insight and inspiration.
We are very privileged to have worked with high calibre architects at companies around the world, and
learned much about the nature of good, right and successful architecture from them. We would especially
like to thank Joe Sventek at Agilent Technologies, Bill Baddely, Bill Crandall, Derek Coleman, Martin
Griss, Reed Letsinger, Holt Mebane, and Keith Moore at Hewlett-Packard, and Rob Seliger at Sentillion,
who all made an early and powerful impact on our views of architecture. More recently, Ilia Fortunov and
Lars Lindstedt at Microsoft, Bill Branson at Frank Russell, not to mention the literally hundreds of archi-
tects who have taken our workshops or interacted with us on consulting projects, have made substantive
contributions to our views. We thank you all!

12 © 2002 BREDEMEYER CONSULTING http://www.bredemeyer.com

References
Bachmann, Felix, L. Bass, J. Carriere, P. Clements, D. Garlan, J. Ivers, R. Nord, and R. Little, Software

Architecture Documentation in Practice: Documenting Architectural Layers, draft available at http://
www.sei.cmu.edu/publications/documents/00.reports/00sr004.html

Bass, Clements, and Kazman. Software Architecture in Practice, Addison-Wesley, 1997.
Bredemeyer, Dana and Ruth Malan, “The Role of the Architect”, white paper published on the Resources

for Software Architects web site, http://www.bredemeyer.com/papers.htm, 2002.
Booch, G., J. Rumbaugh and I. Jacobson, The Unified Modeling Language User Guide, Addison-Wesley,

1999.
Bosch, Jan, Design and Use of Software Architectures: Adopting and Evolving a Product-line Approach,

Addison-Wesley, 2000
Buschman, Frank, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, A System of Patterns: Pattern-Oriented

Software Architecture, Wiley, 1996.
Hofmeister, Nord and Soni, Applied Software Architecture, Addison-Wesley, 2000. (especially Ch. 6 pp.

125-157)
Malan, Ruth and Dana Bredemeyer, “Architectural Requirements”, column published on the Resources for

Software Architects web site, http://www.bredemeyer.com/ArchitectingProcess/ArchitecturalRequire-
ments.htm, 2002 a.

Malan, Ruth and Dana Bredemeyer, “Minimalist Architecture”, column published on the Resources for
Software Architects web site, http://www.bredemeyer.com/Architecture/MinimalistArchitecture.htm,
2002 b.

Malan, Ruth and Dana Bredemeyer, “The Visual Architecting Process”, white paper published on the
Resources for Software Architects web site, http://www.bredemeyer.com/papers.htm, 2002 c.

Ogush, M., D. Coleman, and D. Beringer, “A Template for Documenting Software Architectures”, March
2000, used to be available on http://www.architecture.external.hp.com/Download/download.htm

Rechtin, E. Systems Architecting: Creating and Building Complex Systems. Prentice-Hall, 1991.
Schmidt, Douglas, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented Software Architecture: Patterns

for Concurrent and Networked Objects. Wiley, 2000
Seliger, R. “An Approach to Architecting Enterprise Solutions”. HP Journal, Feb 1997
Shaw, Mary and David Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice-

Hall, 1996
Youngs, R., D. Redmond-Pyle, P. Spaas, and E. Kahan, “A Standard for Architecture Description”, IBM

Systems Journal, Vol 38 No 1. http://www.research.ibm.com/journal/sj/381/youngs.html

Key UML References for Software Architects
Arlow and Neustadt, UML and the Unified Process: Practical Object-Oriented Analysis and Design, Add-

ison-Wesley, 2002
Booch, G., J. Rumbaugh and I. Jacobson, The Unified Modeling Language User Guide, Addison-Wesley,

1999.
Cheesman, Jon and John Daniels, UML Components, Addison-Wesley 2001.
Rumbaugh, J., I. Jacobson and G. Booch, The Unified Modeling Language Reference Manual, Addison-

Wesley, 1999.
The official OMG Unified Modeling Language (UML) Documentation is available at http://www.omg.org.

 SOFTWARE ARCHITECTURE © 2002 BREDEMEYER CONSULTING 13

Appendix A: System Definitions
UML 1.3: A system is a collection of connected units that are organized to accomplish a specific pur-
pose. A system can be described by one or more models, possibly from different viewpoints.

IEEE Std. 610.12-1990: A system is a collection of components organized to accomplish a specific
function or set of functions.

Appendix B: Software Architecture Definitions
The following definitions are by influential writers in this field. They are organized chronologically, with
the most recent first. (You can also check out the SEI's great collection of Software Architecture Defini-
tions.)

UML 1.3: Architecture is the organizational structure of a system. An architecture can be recursively
decomposed into parts that interact through interfaces, relationships that connect parts, and constraints for
assembling parts. Parts that interact through interfaces include classes, components and subsystems.

Jazayeri, Ran, and van der Linden. Software Architecture for Product Families: Principles
and Practice, Addison Wesley Longman, 2000. Software architecture is a set of concepts and design
decisions about the structure and texture of software that must be made prior to concurrent engineering to
enable effective satisfaction of architecturally significant explicit functional and quality requirements and
implicit requirements of the product family, the problem, and the solution domains.

Booch, Rumbaugh, and Jacobson, The UML Modeling Language User Guide, Addison-Wes-
ley, 1999: An architecture is the set of significant decisions about the organization of a software system,
the selection of the structural elements and their interfaces by which the system is composed, together with
their behavior as specified in the collaborations among those elements, the composition of these structural
and behavioral elements into progressively larger subsystems, and the architectural style that guides this
organization---these elements and their interfaces, their collaborations, and their composition.

Bass, Clements, and Kazman. Software Architecture in Practice, Addison-Wesley 1997: 'The
software architecture of a program or computing system is the structure or structures of the system, which
comprise software components, the externally visible properties of those components, and the relationships
among them.

By “externally visible” properties, we are referring to those assumptions other components can make
of a component, such as its provided services, performance characteristics, fault handling, shared resource
usage, and so on. The intent of this definition is that a software architecture must abstract away some infor-
mation from the system (otherwise there is no point looking at the architecture, we are simply viewing the
entire system) and yet provide enough information to be a basis for analysis, decision making, and hence
risk reduction.”

Garlan and Perry, guest editorial to the IEEE Transactions on Software Engineering, April
1995: Software architecture is “the structure of the components of a program/system, their interrelation-
ships, and principles and guidelines governing their design and evolution over time.”

IEEE Std. 610.12-1990: Architecture is the organizational structure of a system.

Mirriam-Webster’s Collegiate Dictionary. Architectural: having, or conceived of as having, a single
unified overall design, form, or structure.

© 2001 BREDEMEYER CONSULTING WHITE PAPER 4/28/05 14

BREDEMEYER CONSULTING
Bloomington, IN 47401
Tel: 1-812-335-1653
http://www.bredemeyer.com

About Bredemeyer Consulting
Bredemeyer Consulting provides a range of consulting and training
services focused on Enterprise, System and Software Architecture.
We provide training and mentoring for architects, and typically work
with architecture teams, helping to accelerate their creation or renova-
tion of an architecture. We also work with strategic management, pro-
viding consulting focused on developing architectural strategy and
organizational competency in architecture.

We manage the Resources for Software Architects web site
(see http://www.bredemeyer.com). This highly acclaimed site orga-
nizes a variety of resources that will help you in your role as architect
or architecture program manager. A number of Bredemeyer Consult-
ing’s Action Guides, presentations and white papers are on the Papers
and Downloads page (http://www.bredemeyer.com/papers.htm). You
may also be interested in our Software Architecture and Enterprise
Architecture Workshops, as well as our Architectural Leadership
class. For more information, please see http://www.bredemeyer.com/
training.htm.

