
A RRCHITECTURE ESOURCES
For Enterprise Advantage
http://www.bredemeyer.com

B CREDEMEYER ONSULTING, Tel: (812) 335-1653

Ar
ch

ite
ct

ur
e Architecting

Architects

© 2003-2005 BREDEMEYER CONSULTING 5/7/05

The Visual Architecting Process™
by Ruth Malan and Dana Bredemeyer
Bredemeyer Consulting
ruth_malan@bredemeyer.com
dana@bredemeyer.com

The Visual Architecting Process™ (VAP) integrates what we have
learned from great architects, and failed architectures, to help you cre-
ate a software architecture that is:

• good—it is technically sound and clearly represented
• right—it meets the needs and objectives of key stakeholders,

and
• successful—it is actually used in developing systems that

deliver strategic advantage.

The Visual Architecting Process™ incorporates the essential steps
involved in creating a good, right architecture and gaining organiza-
tional support and compliance. It uses group graphics and visual mod-
els as key mechanisms to gather input, facilitate team collaboration,
and enhance communication with architecture stakeholders. This
paper outlines the process.

From “Chapter 2. The Visual Architecting Process: Good, Right and Successful”. The
book is titled Software Architecture Action Guide, by Ruth Malan and Dana Bredem-
eyer.

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 2

Introduction
Everywhere software development is discussed, we hear the same litany of concerns: we face unpredict-
ability in development schedules and system behavior, and quality issues with hard to find defects, hard to
fix problems, and fixes that introduce new problems. Our systems are increasingly difficult to change,
making it harder to respond to market shifts. Software development costs more and takes longer. Reuse
opportunities are lost because it is hard to isolate chunks to reuse, or the chunks are highly tuned to a spe-
cific product. There are morale problems and it is hard to keep good people, and hard to energize teams for
the next brutal round trying to meet any kind of schedule. All this has the result that we are losing ground
in the market, our competition can do more with less, and we are not responsive to our customers. If it
wasn’t so painful to all of us embroiled in the problems of software development, this constant repetition
of our woes would get quite tiresome.

The whole situation is exacerbated because, in spite of this list, we are generally quite successful. Our
market tolerates our schedule slips and grudgingly bears with us through our quality issues, and our organi-
zation goes through round after round of bloating growth coupled with displays of developer heroism. But
with each success, our pain gets worse, until suddenly we find we are not successful, and we fail implo-
sively!

Over the past decade or more, the same incantation of woes has motivated SA/SD, OO, OOA/D, UML,
XP, and, yes, even architecture. And various combinations of the same solutions have been posited: model-
ing, encapsulation and information hiding, small teams, iterative development.

Certainly, these are all part of the answer. But the solution has to be to start with architecture, and to
follow it through! This is important for a small project, and indispensable for a large project. For projects
of any complexity (due to the number of people involved, difficulty of the problem, broad scope, etc.),
architecture presents the only way to address significant issues. But it is insufficient to create a “box and
line” drawing showing the system decomposition, although this is a step along the way to partitioning the
problem and making it comprehensible and manageable. It is even insufficient to create well-crafted and
documented interfaces, although this is a step along the way to making the architecture precise and action-
able. A great architecture is simply a bundle of paper until it is implemented. Along the way, all manner of
intentional and unintentional “accommodations” to the architecture are likely to compromise its structural
integrity and render those elegant mechanisms unrecognizable—unless the organization accepts and
understands the architecture and the costs of subverting it.

And so we come to the Visual Architecting Process. It will not make you successful—only you can do
that. But it will help you know what to do and how to do it.

The Visual Architecting Process™

In a companion paper titled “Software Architecture: Central Concerns, Key Decisions” (Malan and Brede-
meyer, 2002), we consider what concerns software architecture addresses, and how one expresses software
architecture. But all the documentation and presentations in the world will not suffice, unless the software
architecture is:

• good—it is technically sound and clearly represented
• right—it meets the needs and objectives of key stakeholders, and
• successful—it is actually used in developing systems that deliver strategic advantage.

The Visual Architecting Process™ (VAP) covers the techniques, including architecture modeling and
architecture trade-off analysis, used in creating a technically sound architecture. It covers architectural
requirements and prioritization to create the right architecture, together with architecture validation to
ensure that the architects and key stakeholders agree that it is indeed the right architecture. And it covers

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 3

the organizational process steps that help ensure that the architecture is embraced and used informedly so
that, ultimately, the architecture is successful.

Figure 1 provides a high-level overview of VAP. For a more full depiction, see the VAP poster on our
web site (http://www.bredemeyer.com/pdf_files/VisualArchitectingProcess_Core.PDF).

Figure 1. The Visual Architecting Process™

The Technical Process

Overview
The focal deliverable of the architecting pro-
cess is the architecture document set, moti-
vating and describing the structure of the
system through various views. However,
though system structuring is at the heart of
the architecting process, it is just one of sev-
eral activities critical to the creation of a
good architecture. Architectural require-
ments are needed to focus the structuring
activities. Different architectural approaches
tend to yield differing degrees of fit to vari-
ous system requirements, and evaluating
alternatives or performing architectural
trade-off analyses should be an integral part
of the structuring phase. Lastly, a validation
phase provides early indicators of, and hence an opportunity to resolve, problems with the architecture.

Architectural Requirements
Architectural requirements are a subset of the system requirements, determined by architectural relevance.
The business objectives for the system, and the architecture in particular, are important to ensure that the
architecture is aligned with the business agenda. The system context helps determine what is in scope and

Init/Commit

Deployment

Architecture
Validation

System
StructuringArchitectural

Requirements

“Good”

“Right”

“Successful”

“Successful”

“Right”

Init/Commit

Deployment

Architecture
Validation

System
StructuringArchitectural

Requirements

“Good”

“Right”

“Successful”

“Successful”

“Right”

Figure 2. The Technical Architecting Process

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 4

what is out of scope, what the system interface is, and what factors impinge on the architecture. The system
value proposition helps establish how the system will fit the users’ agenda and top-level, high-priority
goals. These goals are translated into a set of use cases, which are used to document functional require-
ments (Malan and Bredemeyer, 1999). The system structure fails if it does not support the services or func-
tionality that users value, or if the qualities associated with this functionality inhibit user performance or
neglect other stakeholder goals. System qualities that have architectural significance (e.g., performance
and security, but not usability at the user interface level) are therefore also important in directing architec-
tural choices during structuring (Malan and Bredemeyer, August 2001).

Of course, requirements may already have been collected by
product teams or business analysts. In that case, the architecture
team needs to review those requirements for architectural relevance
and completeness (especially with respect to non-functional require-
ments), and be concerned with requirements for future products that
the architecture will need to support.

Lastly, for the architecture of a product line or family, architec-
tural requirements that are unique to each product, and those that are
common across the product set, need to be distinguished so that the
structure can be designed to support both the commonality and the
uniqueness in each product.

Architecture Specification
The architecture is created and documented in the architecture specification phase. This is decomposed
into sub-phases, addressing sets of decisions along the lines of our software architecture decision model
(Malan and Bredemeyer, 2002).

Meta-Architecture
The meta-architecture is a set of high-level decisions that will
strongly influence the structure of the system, but is not itself the
structure of the system. The meta-architecture, through style, patterns
of composition or interaction, principles, and philosophy, rules certain
structural choices out, and guides selection decisions and trade-offs
among others. By choosing communication or co-ordination mecha-
nisms that are repeatedly applied across the architecture, a consistent
approach is ensured and this simplifies the architecture.

First, the architectural vision is formulated, to act as a beacon
guiding decisions during the rest of system structuring. It is a good practice to explicitly allocate time for
research—or scavenging for ideas—in documented architectural styles, patterns, dominant designs and
reference architectures, other architectures that your organization, competitors, partners, or suppliers have
created or you find documented in the literature, etc. Based on this study, and your and the team’s past
experience, the meta-architecture is formulated. This includes the architectural style, concepts, mecha-
nisms and principles that will guide the architecture team during the next steps of structuring.

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 5

Conceptual Architecture
The intent of the conceptual architecture is to direct attention at an
appropriate decomposition of the system before delving into the
details of interface specification and type information. Moreover, it
provides a useful vehicle for communicating the architecture to non-
technical audiences, such as management, marketing, and many users.

During the conceptual architecture phase, the system components
are identified, along with the responsibilities of each component, and
interconnections between components. These structural choices are
driven by the system qualities, and are document in the rationale sec-
tion which articulates this connection between the architectural
requirements and the structures (components and connectors or communication/co-ordination mecha-
nisms) of the architecture.

Logical Architecture
The logical architecture is the detailed architecture specification, pre-
cisely defining the component interfaces and connection mechanisms
and protocols. It also details out other mechanisms designed to address
cross-cutting concerns. It is used by the component designers and
developers.

The conceptual architecture forms the starting point for the logical
architecture, and it is likely modified as well as refined during the
course of the creation of the logical architecture. Modeling the
dynamic behavior of the system (at the architectural—or component—
level) is a useful way to think through and refine the responsibilities
and interfaces of the components. Component specifications make the
architecture concrete. These should include a summary description of
services the component provides, the component owner’s name, IID and version names, message signa-
tures (IDL), a description of the operations, constraints or pre-post conditions for each operation (these
may be represented in a state diagram), the concurrency model, constraints on component composition, a
lifecycle model, how the component is instantiated, how it is named, a typical use scenario, a programming
example, exceptions, and a test or performance suite.

Execution Architecture
An execution architecture is created for distributed or concurrent systems. The process view shows the
mapping of components onto the processes of the physical system, with attention being focused on such
concerns as throughput and scalability. The deployment view shows the mapping of (physical) components
in the executing system onto the nodes of the physical system. Different possible configurations are evalu-
ated against requirements such as performance and scaling.

Architecture Trade-off Analysis
At each step in architecture specification, it is worthwhile challenging the team’s creativity to expand the
solution set under consideration. The different architectural alternatives are then evaluated against the pri-
oritized architectural requirements. This is known as architecture trade-off analysis (Barbacci et. al., 1998),
and it recognizes that different approaches yield differing degrees of fit to the requirements. Selection of
the best solution generally involves some compromise, but it is best to make this explicit.

Architecture Validation
During architecture specification, the architects obviously make their best effort to meet the requirements

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 6

on the architecture. The architecture validation phase involves additional people from outside the architect-
ing team to help provide an objective assessment of the architecture. In addition to enhancing confidence
that the architecture will meet the demands placed on it, including the right participants in this phase can
help create buy-in to the architecture. Architecture assessment involves “thought experiments”, modeling
and walking-through scenarios that exemplify requirements, as well as assessment by experts who look for
gaps and weaknesses in the architecture based on their experience. Another important part of validation is
the development of prototypes or proofs-of-concept. Taking a skeletal version of the architecture all the
way through to implementation, for example, is a really good way to prove out aspects of the architecture.

Iterations
Though described sequentially above, the architecting process is best conducted iteratively, with multiple
cycles through requirements, structuring and validation. One approach is to have at least one cycle devoted
to each of Meta, Conceptual, Logical, and Execution architecture phases, and cycles for developing the
architectural guidelines and any other materials (such as tutorials) to help in deploying the architecture
(Figure 3). At each cycle, just enough requirements are collected to proceed with the next structuring step,
and validation concentrates on the architecture in its current phase of maturity and depth .

We also do not recommend turning the process into a “waterfall” by sticking rigidly to the bands in the
Architecture Decision Framework (Malan and Bredemeyer, May 2002), completing all of Meta-Architec-
ture before moving on to Conceptual Architecture, for example. Rather, use the Decision Model as a guide,
and as a placeholder for completed work (system abstractions and concepts go in the Conceptual Architec-
ture document set, interface details go in Logical architecture, etc.). But by all means move forward
quickly to investigate in more detail aspects of the architecture that are high risk. As you work decisions in
another area (perhaps you are exploring the design of a key architectural mechanism, and thinking through
the behavior of components involved) you will likely rethink or have new insights into areas already “dealt
with”. It only makes sense to hold the whole architecture somewhat in suspension as you move through the
process, being willing to backtrack and make changes, then work forward again.

However, what you present to external audiences is a systematic process that moves in an organized
way through the layers of decisions, from strategy to conceptual views to more precise and actionable
architecture specifications. You can still have program checkpoints (with formal reviews and sign-off to
mark completion of Meta, Conceptual, Logical, Execution, Guidelines) to project this organized progress,

Figure 3. Schematic overlaying the Visual Architecting
Process upon the Architecture Decision Model

Architecture Guidelines and Policies

Execution Architecture

S
t
r
u
c
t
u
r
I
n
g

Re
qu

ire
m

en
ts Validation

Architecture

Conceptual Architecture

Meta-

Logical Architecture

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 7

although behind the scenes you have already scouted out the architectural territory that lies ahead of the
official checkpoint.

Another permutation to the process has to do with how much of this decision set the architecture team
completes in a small focused team, versus expanding the team or even handing off the remaining architec-
tural decisions to the development teams. Architecture teams that we have worked with, have stopped at
different points, leaving more detailed architecting to the product and component teams. At one end of the
spectrum, a very small team of architects created the Meta-architecture, and each of the product teams cre-
ated their own architectures within the guidelines and constraints of the Meta-architecture. Other architec-
ture teams have created the Meta- and Conceptual architectures, and a broader team of component owners
developed the Logical architecture. At the other end of the spectrum, the architecture team developed the
entire architecture, all the way to its detailed Logical architecture specification. This approach yields the
most control over the architecture specification, but is typically fraught with organizational issues (e.g., the
“NIH syndrome”) that slow or even inhibit the use of the architecture.

The Organizational Process

Overview
Architecture projects are
susceptible to three major
organizational sources of
failure—the project is
under-resourced or can-
celled prematurely by an
uncommitted management;
it is stalled with endless
infighting or a lack of lead-
ership; or the architecture is
ignored or resisted by prod-
uct developers. The organi-
zational process helps
address these pitfalls. Two
phases—namely Init/Com-
mit and Deployment—
bookend the technical process. However, the principal activities in these phases, namely championing the
architecture and leading/teaming in Init/Commit, and consulting in Deployment, also overlap with the
technical process activities (Figure 4).

Init/Commit
The Initiate and gain Commitment (or Init/Commit) phase focuses on initiating the architecture project on
a sound footing, and gaining strong commitment from upper management. The creation of the architecture
vision is central both to aligning the architecture team and gaining management sponsorship. A communi-
cation plan is also helpful in sensitizing the team to the need for frequent communication with others in the
organization. A heads-down, hidden skunkworks architecture project may make quick progress—as long
as it is well-led and its members act as a team. However, not listening to the needs of the management,
developers, marketing, manufacturing and user communities and not paying attention to gaining and sus-
taining sponsorship in the management and technical leadership of the organization, or buy-in from the

Figure 4. The Architecting Process including the Organizational Process

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 8

developer community, will lead to failure. The communication plan places attention on balancing the need
for communication and isolation, as well as planning what to communicate when, and to whom.

Championing
It is important that at least the senior architect and the architecture project manager (if there is one) cham-
pion the architecture and gain the support of all levels of management affected by the architecture. Cham-
pioning the architecture starts early, and continues throughout the life of the architecture, though attention
to championing may taper off as the architecture comes to be embraced by the management and developer
communities.

Leading/Teaming
For the architecture team to be successful, there must be a leader (Malan and Bredemeyer, March 2001)
and the team members must collaborate to bring their creativity and experience to bear on creating an
architecture that will best serve the organization. This would seem so obvious as to not warrant being said,
but unfortunately this is far less evident in practice than one would suppose. In many organizational cul-
tures, there is collusion among the technical people not to allow a leader to emerge. When we point out the
lack of leadership, we are told “this is a consensus culture,” but really it is a culture that has formed an
effective way to allow no-one to lead by insisting that all must agree to every decision. The reality is there
will be logjams, that is the nature of this game. Someone has to lead the team through tough decisions.
Others have to follow. We’ve said it before, and we’ll say it again: goodwill is the real silver bullet.

We believe in the value of collaboration and consensus, and we are pragmatists. Sometimes the con-
sensus process is too slow, or inherently the issues are too divisive. In an architecture team full of talented
people with strong leadership qualities and high emotional investment in the goodness and success of the
architecture, there nonetheless needs to be one person who is appointed to be the leader, and accepted as
the leader among the team and the rest of the organization. The architecture team needs to set the example
of good following, for how can they expect the development community to follow the architecture if they
themselves display poor following behavior?

Deployment
The Deployment phase follows the technical process, and addresses the needs of the developers who are
meant to use the architecture to design and implement products. These range from understanding the archi-
tecture and its rationale, to responding to the need for changes to the architecture. This entails consulting,
and perhaps tutorials and demos, as well as the architects' involvement in design reviews.

Communicating and Consulting
Consulting with and assisting the developer community in their use of the architecture is important in facil-
itating its successful adoption and appropriate use. These activities are most intense during deployment.
However, earlier communication and consulting helps create buy-in among the developer community
through participation and understanding. This allows the architecture team to understand the developers’
needs and the developers to understand the architecture (and its rationale) as it evolves through the cycles
of the technical process.

Rather than protest that it is the responsibility of developers to read the architecture documents, archi-
tects need to play a proactive role. Workshops designed around exercises applying the architecture are
great at getting participants’ minds and hands engaged. It also takes ongoing consulting and constant edu-
cating and influencing through the construction phase of the project to ensure the architecture is under-
stood and adhered to, and to take corrective action when ambiguities or misunderstandings surface. The
architect’s role at this point is guide and coach, generally setting direction but drawing a firm line when
needed.

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 9

Further, the architect needs to be attentive to any emerging decisions that require architecture interven-
tion or assistance. The architect also serves as a resource to the developers—a sounding board, someone to
assist with problem-solving, a mentor. The more effective and credible the architect, the more likely it will
be that developers seek the participation of the architect when they encounter challenges that might be
architectural (broad scope, high impact, or affecting system integrity). This provides the architect with
much-needed opportunities to stay current with the challenges emerging in the domain, while providing
developers the benefit of the architect’s talent and experience and deep insight into the architecture.

Principles to Guide the Architecting Process

How far to go in architecting a system requires judgment and experience, but we have established a set of
principles to help you make the call between more architectural detail and hence more constraints being
placed on the development community, versus less detail and hence less control over the system formula-
tion and ultimate achievement of the architecture vision, objectives and key properties.

Minimalist Architecture Principle
Essentially, the Minimalist Architecture Principle says “if a decision can reasonably be made by someone
with a more narrow scope of responsibility, defer the decision to that person or group” (Malan and Brede-
meyer, 2002). This means that architects only make decisions that require the overall perspective and
insight of the architect, are critical to the achievement of strategic business objectives at the scope of the
architecture, and if delegated, would likely be made in a way that compromises the achievement of those
objectives. If a decision does not meet these criteria, then the architect should not make it.

Decisions With Teeth Principle
Another way of pruning the architecture decision set is to apply the Decisions with Teeth Principle. Too
often, architects and their deployment communities treat architecture decisions as statements of “general
good.” These decisions are treated like guidelines or suggestions, which other architects, designers or
implementers choose whether or not to follow. Such decisions have no teeth. The reason to avoid making
decisions that are likely to be dismissed is simple: put bluntly, it is a waste of time for the architect to
make, and for others to think about and then ignore, such decisions. And it is damaging to breed a culture
that supports an architecture free-for-all. You cannot achieve your architecture goals without an effective
architecture decision set.

You can give a decision teeth if you are passionate enough about the decision to be its champion and its
watchdog. But each decision that relies on you to give it teeth, diminishes your overall effectiveness—you
just get spread too thin to keep up. The governance process is intended to shift responsibility for providing
all of the teeth from the architect to others who share the burden. Now, decisions that have teeth are those
that are both enforceable and enforced. The governance process allows for discovery of breaches and
determines consequences, rather than granting exceptions at every request. This does mean that the deci-
sions must be well-formed. They have to be unambiguous and have a clear scope of applicability.

This may highlight a need to improve your governance process, but even with a strong governance
process in place, objections raised in the name of customer advocacy have a powerful shield. That is, argu-
ments in favor of the “general good” are susceptible to counter-arguments made in the name of a particular
customer (or market segment) or immediate concern.

Connect-the-Dots Principle
Now here’s the rub: each decision in a truly minimalist architecture is there because it could not be made
by someone with local scope of responsibility—if they did, they would compromise the overall goals of
the architecture. In other words, everyone else either does not have the perspective and knowledge to make

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 10

the decision, or they would make a decision that maximizes their local interests at the expense of the archi-
tecture goals. By their nature, decisions in a minimalist architecture are going to have detractors who, from
their local perspective, see the decisions as sub-optimal. In short, the decisions that are worth making part
of the architecture are exactly the ones that will be controversial in some quarters.

This presents a conundrum which is resolved by applying another principle, which we call Connect-
the-Dots. According to this principle, each architecture decision must be rationalized in terms of business
goals, system and architecture requirements, or higher-level architecture decisions. You see, the only voice
that stands any chance of holding its own against the voice of a customer is the voice of the business. Busi-
ness strategy represents the voice of the business, and connect-the-dots creates a compelling chain that
links business strategy to architecture goals to architecture decisions.

At its best, business strategy is well grounded in the voice of the customer and it is grounded in the
voice of the business telling the story of competitive differentiation. It takes into account the competitive
environment, the value network, internal capabilities and financial goals. Architecture that takes business
strategy as its starting point, and shows how each architecture decision is necessary to achieve the business
strategy, expresses the voice of the business, and follows the connect-the-dots principle.

Architecture as the Technical Expression of Business Strategy
When the case has been made that the architecture decisions satisfy these three principles, then that set of
decisions can be described as the technical expression of the business strategy. When such a decision,
clearly driven by the business strategy, is ignored, we need to realize that it is not the architecture that is
being brought into question, but the strategy itself. This focuses discussion where it belongs. We need to
not get distracted by debate about technology questions when the real issue is clarifying and enforcing
what is strategic to the business.

With a minimalist architecture, and connected dots, we can empower the governance process to pro-
vide the teeth that will make the architecture stick. Hopefully, though, we can rely more on the bark than
the bite, and still more on persuasion, relying on the goodwill of those whose immediate interests are
somewhat compromised because the overall benefit of achieving the business strategy makes it all worth-
while.

With a bloated architecture, no matter how well-intentioned, it all comes unraveled. A bulky architec-
ture is too expensive and hard to give teeth to. It is expensive to read and expensive to execute on, not to
mention more likely to be flawed. Your governance process will get locked in interminable exception pro-
cessing allowing no bandwidth to catch important deviations from the architecture nor any shortfall in the
architecture itself.

Conclusion
We have worked with and studied dozens of architecting projects, and distilled what we believe to be the
best practices and pitfalls that would help architects successfully create and deploy their architectures. This
experience guided our creation of the Visual Architecting Process. Though our architecting process lays
out the activities and guidelines that we have derived from real-world experience, no project that we stud-
ied followed exactly this process. Also, every project that we have consulted with or coached, has adapted
the process. This has been true of other software development methods, such as SA/SD, OMT and Fusion
(Malan, Coleman and Letsinger, 1995). It would appear that a method is not fully embraced by a project
team until they have adapted it to their particular project needs. In this regard, methods are somewhat like
architectures!

Actually, we strongly encourage you to tailor “just enough process” to meet your project goals and cur-
rent context. Keep your audience in mind, and orient what you do so that your architecture can and will be
used.

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 11

References
Barbacci, M. R., S. J. Carriere, P. H. Feiler, R. Kazman, M. H. Klein, H. F. Lipson, T. A. Longstaff, and C.

B. Weinstock, “Steps in an Architecture Trade-off Analysis Method: Quality Attribute Models and
Analysis”, http://www.sei.cmu.edu/publications/documents/97.reports/97tr029/97tr029title.htm See
also the SEI Architecture Trade-off Analysis Initiative website, http://www.sei.cmu.edu/ata/
ata_init.html

Malan, R. A., R. Letsinger and D. Coleman. “Lessons Learned from Leading-Edge Object Technology
Projects in Hewlett-Packard”, Proceedings of OOPLSA'95, 1995.

Malan, R. A., and D. Bredemeyer, “Defining Non-Functional Requirements”, published on the Resources
for Software Architects web site at http://www.bredemeyer.com/pdf_files/NonFunctReq.PDF, 39kb,
August 2001.

Malan, R. A., and D. Bredemeyer, “Architecture Teams”, published on the Resources for Software Archi-
tects web site at http://www.bredemeyer.com/pdf_files/ArchitectureTeams.PDF, 39kb, March 2001.

Malan, R. A., and D. Bredemeyer, “Functional Requirements and Use Cases”, published on the Resources
for Software Architects web site at http://www.bredemeyer.com/pdf_files/functreq.pdf, 39kb, June
1999.

Malan, R. A. and D. Bredemeyer, “Software Architecture: Central Concerns, Key Decisions”, published
on the Resources for Software Architects web site at http://www.bredemeyer.com/pdf_files/Architec-
tureDefinition.pdf, May 2002.

Malan, R. A. and D. Bredemeyer, “Less is More with Minimalist Architecture”, IT Professional, IEEE,
September 2002.

Ogush, M., D. Coleman, and D. Beringer, “A Template for Documenting Software Architectures”, pub-
lished on the HP architecture web site which has been discontinued, March 2000.

Youngs, R., D. Redmond-Pyle, P. Spaas, and E. Kahan, “A Standard for Architecture Description”, IBM
Systems Journal, Vol 38 No 1. http://www.research.ibm.com/journal/sj/381/youngs.html

Restrictions on Use
This paper and all other material that is published on the Resources for Software Architects web site (http:/
/www.bredemeyer.com), may be downloaded and printed for personal use. If you wish to quote or para-
phrase fragments of our work in another publication or web site, please properly acknowledge us as the
source, with appropriate reference to the article or web page used. If you wish to republish any of our
work, in any medium, you must get written permission from the lead author or the site editor. Also, any
commercial use must be authorized in writing by Bredemeyer Consulting.

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 12

A Note About the Forthcoming Book
We are writing a book for software architects that is short and oriented to guiding action. It has two parts,
with the first part providing context and a guide to the process. The second part is the full set of Action
Guides, one for each discrete technique, model or template that is used in the Visual Architecting Process.
For a preview of our Action Guides, please look at examples under Downloads on the Papers and Down-
loads page of our web site at http://www.bredemeyer.com/papers.htm.

Please join our mailing list to receive notice of new chapters as they are added to the site. To do so,
complete the form on our web site at http://www.bredemeyer.com/Forms/subscrib.htm, or click the enve-
lope icon in the sidebar of most pages on our web site.

Table of Contents

Part I: Software Architecture and the Visual Architecting Process
Chapter 1. Software Architecture: Central Concerns, Key Decisions
Chapter 2. The Visual Architecting Process: Good, Right and Successful
Chapter 3. Initiate and Gain Commitment: Getting Started
Chapter 4. Meta-Architecture: Getting Strategic
Chapter 5. Conceptual Architecture: Getting the Big Chunks Right
Chapter 6. Logical Architecture: Getting Precise, Making Actionable
Chapter 7. Execution Architecture: Getting Physical
Chapter 8. Architecture Guideline and Policies: Getting Specific
Chapter 9. Architecture Deployment: Getting Real

Part II: Software Architecture Action Guides
Here are some examples of what we call Action Guides:

• Software Architecture Principles Template (http://www.bredemeyer.com/pdf_files/
Principles_Template.PDF, 24kb)

• Stakeholder Profile Action Guide (http://www.bredemeyer.com/pdf_files/
Stakeholder_Profile.PDF, 222kb)

• Use Case Template (http://www.bredemeyer.com/pdf_files/UseCase_Template.PDF, 25kb)
• Interface Specification Template (http://www.bredemeyer.com/pdf_files/Interface_Template.PDF,

24kb)

© 2003-2005 BREDEMEYER CONSULTING VISUAL ARCHITECTING PROCESS 1/20/05 13

Resources for Architects
Software Architecture Workshop. This class focuses on the Visual Architecting Process (VAP). It is
organized around the process. As the workshop progresses, small teams of participants take their project
from vision to architecture. This format, punctuating lectures with exercises that build on one another,
gives participants the opportunity to learn and practice techniques used in each of the process steps.

Open Enrollment Class:
Indianapolis, IN on September 26-29, 2005
London, UK on June 20-23, 2005
See http://www.bredemeyer.com/architecture_workshop_overview.htm

Enterprise Architecture Workshop. This class focuses on the Visual Architecting Process for the Enter-
prise (VAP-Enterprise). Following a couple of context-setting modules, the core sections of the course are
organized around the process. It follows a workshop format, with lecture modules followed by team exer-
cises to practice techniques and solidify concepts and models. The Visual Architecting Process for the
Enterprise starts with Business Strategy, identifies and refines the Business Capabilities Architecture, and
uses this to drive the Information (data), Application Solution, and Technology (Infrastructure) Architec-
tures at the enterprise level of scope.

Open Enrollment Class:
Palo Alto, CA on March 21-24, 2005.
London, UK on June 20-23, 2005
See http://www.bredemeyer.com/Enterprise Architecture/Enterprise_Architecture_Workshop.htm

Software Architecture Overview Seminar: This course goes over the basics (what, why, how, who,
when, and where) and is a good introduction for managers and developers, business analysts and others
who need to partner with architects in making architecture successful. This class will build insight into the
importance of architecture, as well as the role of architects and others in making architecture successful.

See http://www.bredemeyer.com/Workshops/Descriptions/architectureConceptsWorkshop.htm

Role of the Architect Workshop. Excellent class for architects—according to those who have taken it,
that is. This class helps you identify what skills you need to strengthen, and starts you along the road to
building them, while providing options for what to do next to further develop needed skills.

Open Enrollment Class: Indianapolis, IN on May 24-26, 2005
See http://www.bredemeyer.com/role_of_architect_workshop_overview.htm

For more information on our training classes, please see http://www.bredemeyer.com/training.htm.

The Resources for Software Architects web site (http://www.bredemeyer.com) organizes a variety of
resources that will help you in your role as an architect or architecture project manager. A number of white
papers and Action Guides are on the Papers and Downloads page (http://www.bredemeyer.com/
papers.htm).

© 1999-2005 BREDEMEYER CONSULTING WHITE PAPER 4/28/05 14

BREDEMEYER CONSULTING
Bloomington, IN 47401
Tel: 1-812-335-1653
http://www.bredemeyer.com

About Bredemeyer Consulting
Bredemeyer Consulting provides a range of consulting and training services
focused on Enterprise, System and Software Architecture. We provide train-
ing and mentoring for architects, and typically work with architecture teams,
helping to accelerate their creation or renovation of an architecture. We also
work with strategic management, providing consulting focused on developing
architectural strategy and organizational competency in architecture.

We manage the Resources for Software Architects web site (see http://
www.bredemeyer.com). This highly acclaimed site organizes a variety of
resources that will help you in your role as architect or architecture program
manager. A number of Bredemeyer Consulting’s Action Guides, presentations
and white papers are on the Papers and Downloads page (http://www.bredem-
eyer.com/papers.htm). You may also be interested in our Software Architec-
ture and Enterprise Architecture Workshops, as well as our Architectural
Leadership class. For more information, please see http://www.bredem-
eyer.com/training.htm.

